-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (50 loc) · 1.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from torchvision.transforms import transforms
import data
import model
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_set = data.MyData(r'data\train',r'data\normal_data\train.csv', transform=transform)
data_train_loader = DataLoader(train_set, batch_size=256, shuffle=True, num_workers=0, drop_last=True)
mymodel = model.ResNet()
mymodel.train()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(mymodel.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)# 定义随机梯度下降优化器 )
epoch = 10
# for inputs, targets in data_train_loader:
# pass
# optimizer.zero_grad()
# outs = mymodel(inputs)
# loss = criterion(outs, targets)
# loss.backward()
# optimizer.step()
for i in range(epoch):
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(data_train_loader):
optimizer.zero_grad()
outputs = mymodel(inputs)
loss = criterion(outputs,targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predict = outputs.max(1)
total += targets.size(0)
_, realtag = targets.max(1)
correct += predict.eq(realtag).sum().item()
print(batch_idx, len(data_train_loader),'Loss: %.3f | (Acc: %.3f %%(%d/%d'%(train_loss/(batch_idx+1),100.*correct/total,correct,total))
info = {
"epoch": epoch,
"optimizer": optimizer.state_dict(),
"model": mymodel.state_dict()
}
torch.save(info, r"./model/model.pth")