forked from eghummel/BD-Code-Development
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BD code v5.py
574 lines (507 loc) · 21.2 KB
/
BD code v5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import numpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
import math
from math import pi
from math import sqrt
import statistics
import scipy.integrate
from scipy.signal import find_peaks
from numpy import trapz
from scipy.integrate import cumtrapz
# SETUP VARIABLES - USER INPUTS
project = "Insert Project Name"
station = "Insert Station Name"
date = "Insert date here"
BD = 3
atype = 'p' # m = mantle area, p = projected area
tiptype = 'c' # c = cone, p = parabolic, b = blunt
# paste the filepath to the folder where the bd data is stored
binFilepath = Path("H:\My Drive\CEE 5904 - Project & Report\FRF Data/test data")
# write the bin file number you want to analyze (do not include 'bLog' or '.bin')
fileNum = '02F4'
outputFile = 'data.xlsx' #this currently doesn't do anything, but eventually all data will be printed out into an excel sheet
outputPath = Path("H:\My Drive\CEE 5904 - Project & Report\FRF Data/test data") # Path for new files
offset = 1 # this value is subtracted from the accelerometer readings
droptype = 'w' #w = water, #a = air
def masslength(tiptype): #sets the mass and length of the pentrometer based on the tip
global mass
global length
if tiptype == 'c':
mass = 7.71 #kg
length = 7.87
elif tiptype == 'p':
mass = 9.15
length = 8.26
elif tiptype == 'b':
mass = 10.30
length = 8.57
def dropstartend(peak): #after locating the peaks, this function chops the minute long file into a smaller segment immediately before and after the peak
global dropstart
global dropend
if peak <= 1500:
dropstart = 1
dropend = peak + 500
elif peak > 119500:
dropstart = peak - 1500
dropend = 120000
else:
dropstart = peak - 1500
dropend = peak + 500
def accPick(dg, d): #this function picks the smallest accelerometer that's not maxed out to perform the integration on
maxAcc = dg["250g (g)"].max()
global acc
global accName
global accNameg
global accg
if maxAcc < 5 - offset:
if dg["2g (g)"].max() < 1.8 - offset: # does an extra check for the 2g because of noise
acc = d["2g (m/s^2)"]
accg = dg["2g (g)"]
accName = "2g (m/s^2)"
accNameg = "2g (g)"
else:
acc = d["18g (m/s^2)"]
accg = dg["18g (g)"]
accName = "18g (m/s^2)"
accNameg = "18g (g)"
elif maxAcc < 18 - offset:
acc = d["18g (m/s^2)"]
accg = dg["18g (g)"]
accName = "18g (m/s^2)"
accNameg = "18g (g)"
elif maxAcc < 50 - offset:
acc = d["50g (m/s^2)"]
accg = dg["50g (g)"]
accName = "50g (m/s^2)"
accNameg = "50g (g)"
else:
acc = d["250g (m/s^2)"]
accg = dg["50g (g)"]
accName = "250g (m/s^2)"
accNameg = "250g (g)"
def findchangepts(): #This function picks the moment that the BD impacts the ground
global drop
jlist = list()
global jindex
print("finding start of drop...")
for i in range(4,len(accg)-4):
p1 = 1
#print(p1)
p2 = i
#print(p2)
p3 = len(accg)
#print(p3)
sample1 = list(accg[p1:p2-1])
#print(sample1)
sample2 = list(accg[p2:p3])
#print(sample2)
stat1 = math.log(statistics.variance(sample1))
stat2 = math.log(statistics.variance(sample2))
#print(stat1)
j1 = (i-1)*stat1
j2 = ((len(accg)-1)-i+1)*stat2
j = j1+j2
#print(j)
jlist.append(j)
drop = min(jlist)
#print("drop is")
#print(drop)
jlist = np.array(jlist)
#print(jlist)
#print(jlist.size)
jlist = np.insert(jlist, 0, (0,0,0,0)) #reshape to match up with dataframe d
jlist = np.append(jlist, (0,0,0,0)) #reshape to match up with dataframe d
#print(jlist.size) #should be 2000
jindex = np.where(jlist==drop) #finds the index of the drop start
jindex = int(jindex[0]) #converts the index into a number from a tuple
def finddropend(): #finds the location where the deceleration is 1-offset after the peak
global num1
global num2
below0list = list()
for i in range(dropstart+jindex, dropend, 1):
if accg[i] < 1 - offset:
num1 = i - dropstart
#num2 = i-jindex-1
below0list = np.append(below0list, num1)
num1=int(min(below0list))
def integration(d): #integrates the deceleration data to solve for velocity and penetration depth
global vel
global maxvel
global dep
global maxdep
accint = acc[jindex:num1]
vel = scipy.integrate.cumtrapz(accint, x=d["Time (s)"]) # solves for velocity
vel = np.array(vel)
vel = numpy.insert(vel, 0, 0) #not sure what to insert here, but it makes it the right size
vel = np.flip(vel)
maxvel = vel.max()
dep = scipy.integrate.cumtrapz(vel, x=d["Time (s)"]) # solves for penetration depth
dep = numpy.insert(dep, 0, 0) # not sure what to insert here, but it makes it the right size
maxdep = dep.max()
d.insert(9, "Velocity (m/s)", vel)
d.insert(10, "Penetration Depth (m)", dep)
def areafind(): #finds the embedded area based on the penetration depth, area type, and the tip
global area
a1 = list() #placeholder for the penetrated area at that specific depth
d1 = dep*100 #penetration depth array, in cm
print(len(d1))
r = list() #placeholder for the radius at that specific depth
if tiptype == 'c':
if atype == 'm':
for k in range(0,len(d1)):
if d1[k]<length:
r.append(d1[k]*np.tan(30*pi/180))
a1.append(pi*r[k]*(sqrt((r[k]**2)+(d1[k]**2))))
elif d1[k]>=length:
r.append(4.375)
a1.append(pi*r[k]*(sqrt((r[k]^2)+(length^2))))
a1[k] = a1[k]/10000
area = a1
elif atype == 'p':
for k in range(0,len(d1)):
if d1[k]<length:
r.append(d1[k]*np.tan(30*pi/180))
a1.append(pi*r[k]**2)
elif d1[k]>=length:
r.append(4.375)
a1.append(pi*(r[k])**2)
a1[k] = a1[k]/10000
area = a1
elif tiptype == 'b':
if atype =='m':
for k in range(0,len(d1)):
if d1[k]<length:
r.append(4.375)
a1.append(pi*r[k]**2 + 2*pi*r[k]*d1[k])
if d1(k)>=length:
r.append(4.375)
a1.append(pi*r[k]**2 + 2*pi*r[k]*length)
a1[k]=a1[k]/10000
area = a1
elif atype == 'p':
for k in range(0,len(d1)):
a1.append(pi*4.375^2)
a1[k]=a1[k]/10000
area = a1
'''elif tiptype == "p":
if atype == 'm':
for k in range(1,len(d)):
if d1[k]<length:
r[k]=sqrt(2.4184*d1[k])
polarfun = @(theta,r) r.*sqrt(0.745*r.^2 + 1);
A1(k)= integral2(polarfun,0,2*pi,0,r(k));
elif atype == 'p':
for k in range(1,len(d)):'''
def bc(acc): # calculates dynamic and quasi-staticbearing capacity
global qdyn
global bctable
buoy = 1020*0.002473
if droptype == "w": #water drops
Fbe = (mass-buoy)*acc #drop force
elif droptype =="a": #air drops
Fbe = mass*acc
qdyn = (Fbe/area)/1000 #Dynamic bearing capacity (kPa)
srcv = np.log10(vel/0.02) #Velocity portion of the strain rate correction.
srfk = [0.2, 0.4, 1, 1.5] #list of strain rate factors to run
bctable = pd.DataFrame()
for i in range(0,len(srfk)):
fsr = 1+srfk[i]*srcv
qsbc = qdyn/fsr
bctable.insert(i, "qsbc for srf = "+str(srfk[i]), qsbc)
print(bctable)
#Set the penetrometer mass and length
masslength(tiptype)
# READ BD DATA IN
data_array = [] # creates an empty array for us to fill with bd data
fileName = 'bLog'+fileNum+".bin"
# print(fileName)
newPath = binFilepath / fileName
print(newPath)
file = open(newPath, 'rb') # read file
element = file.read(3) # create a byte list with each element having 3 bytes
while element:
# Convert to signed integer before adding to data array
iVAl = int.from_bytes(element, byteorder='big', signed=True)
data_array.append(iVAl) # adds the reshaped data from the bd file to the data frame
element = file.read(3)
np_array = np.array(data_array) # create numpy array from the list
np_array = np.reshape(np_array, (-1, 10)) # convert the 1d array to 2d array with 10 cols
print(np_array.shape)
# print(np_array)
df = pd.DataFrame(np_array) # Creates a Dataframe in pandas from the bd data
df.columns = ['Count', 'no clue', 'g2g', 'g18g', 'g50g', 'ppm', 'g200g', 'gX55g', 'gY55g', 'g250g'] # names columns
# print(dfCal)
# APPLY CALIBRATION FACTORS
if BD == 3: # calibration factors from July 2019
g2g = (df['g2g']-34426.5)/1615925.8 - offset# accelerometers are in g
g18g = (df['g18g']+12322.1)/163530.7 - offset
g50g = (df['g50g']-237384.9)/63651 - 0.1120 - offset
ppm = ((df['ppm']+62496.7)/20583.0) * 6.89475729 # converts to kPa
g200g = ((df['g200g'] -248943.7)/39009.4)+0.5518 - offset
gX55g = (df['gX55g']-59093.7)/66674.3 - offset #check if lateral accelerometers also need to be offset
gY55g = (df['gY55g']-140224.6)/66674.3- offset
g250g = (df['g250g']-40536.1)/13631.6 - offset
if BD == 2: # calibration factors from Aug 26, 2021
g2g = (df['g2g']+31384.7)/1624987.2-0.035 - offset# accelerometers are in g
g18g = (df['g18g']-26631.0)/159945.4 - offset
g50g = (df['g50g']+92987.0)/63783.5 - offset
ppm = ((df['ppm']-35170.6)/12922.9) * 6.89475729 # converts to kPa
g200g = (df['g200g']-16264.8)/26042.8 -0.277 - offset
gX55g = (df['gX55g']+89890.3)/63897.1 - offset
gY55g = (df['gY55g']+14993.0)/64118.0 - offset
g250g = (df['g250g']+17362.1)/13533.5+0.0656 - offset
if BD == 1: # calibration factors from July 2020
g2g = (df['g2g']+277743.2)/1637299.6 - offset # accelerometers are in g
g18g = (df['g18g']-3755.9)/159932.2 - offset
g50g = (df['g50g']+92817.6)/63237.1 - offset
ppm = ((df['ppm']-33154.0)/14763.5) * 6.89475729 # this is kPa
g200g = (df['g200g'] -1155309.9)/28368.5 - 1.464 - offset
gX55g = (df['gX55g'] +97138.4)/62023.7 - offset
gY55g = (df['gY55g']-9921.7)/62669.2 - offset
g250g = (df['g250g']+59211.3)/13276.9 - offset
time = (df['Count']-df['Count'].iloc[0]+1)/2000 # gives time in s
count = df["Count"]
# make a new dataframe of the calibrated values in units of g
dfCalg = pd.DataFrame([time, g2g, g18g, g50g, g200g, g250g, gX55g, gY55g, ppm])
dfCalg = dfCalg.T
dfCalg.columns = ['Time (s)', '2g (g)', '18g (g)', '50g (g)', '200g (g)', '250g (g)', 'X55g (g)', 'Y55g (g)', 'Pore Pressure (kPa)'] # names columns
#print(dfCalg)
#make a new dataframe of the calibrated values in units of m/s^2
dfCal = pd.DataFrame([time, g2g, g18g, g50g, g200g, g250g, gX55g, gY55g, ppm])
dfCal = dfCal.T
dfCal.columns = ['Time (s)', '2g (m/s^2)', '18g (m/s^2)', '50g (m/s^2)', '200g (m/s^2)', '250g (m/s^2)', 'X55g (m/s^2)', 'Y55g (m/s^2)', 'Pore Pressure (kPa)'] # names columns
dfCal['2g (m/s^2)'] = dfCal['2g (m/s^2)'] * 9.80665
dfCal['18g (m/s^2)'] = dfCal['18g (m/s^2)'] * 9.80665
dfCal['50g (m/s^2)'] = dfCal['50g (m/s^2)'] * 9.80665
dfCal['200g (m/s^2)'] = dfCal['200g (m/s^2)'] * 9.80665
dfCal['250g (m/s^2)'] = dfCal['250g (m/s^2)'] * 9.80665
dfCal['X55g (m/s^2)'] = dfCal['X55g (m/s^2)'] * 9.80665
dfCal['Y55g (m/s^2)'] = dfCal['Y55g (m/s^2)'] * 9.80665
#print(dfCal)
#Locate the drops
x = np.array(g250g) # what accelerometer to get the peaks from
peaks, _ = find_peaks(x, height = 2, distance=10000, prominence=3) # finds the largest peaks more than 2g spaced at least 10000 counts apart
peaksArray = np.array(peaks) # prints a list of the count where the peaks occur
#print(peaksArray)
q = (peaksArray.shape) #gives number of peaks
nDrops = int(q[0]) #number of drops in the file
#print(nDrops)
# For each drop, find the start and end points and integrate to solve for velocity and acceleration
a = 0
n = 1
while n <= nDrops :
peak = int(peaksArray[a]) # count at the ath drop
dropstartend(peak) #zooms in the drop file to only consider 500 counts before and 1500 counts after the peak deceleration
#print(dropstart, dropend)
if n == 1 :
drop1 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop1g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop1 = pd.DataFrame(drop1) # makes dataframe including all data within the start and end points of the drop
drop1g = pd.DataFrame(drop1g)
dg = drop1g
d = drop1
accPick(dg, d) # chooses what accelerometer to use
acc1 = acc
acc1Name = accName
acc1Nameg = accNameg
findchangepts() #finds the start of the drop
finddropend() #dinds the end of the drop
#print(drop)
d = d[jindex:num1] #shortens the dataframe to only include the data during penetration (jindex = start, num1 = end)
dg = dg[jindex:num1]
#print(d)
#print(np.size(d))
drop1 = d
drop1g = dg
integration(d) #solves for velocity and acceleration
drop1 = d #this dataframe now includes velocity and acceleration data
#print(drop1)
areafind()
acc1 = acc1[jindex:num1]
bc(acc1)
qdyn1 = qdyn
if n == 2 :
drop2 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop2g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop2 = pd.DataFrame(drop2) # makes dataframe including all data within the start and end points of the drop
drop2g = pd.DataFrame(drop2g)
dg = drop2g # chooses what accelerometer to use based on the max g
d = drop2
accPick(dg, d) # chooses what accelerometer to use
acc2 = acc
acc2Name = accName
acc2Nameg = accNameg
#print(num1, num2)
#print(acc)
#print(acc.iloc[1])
findchangepts()
finddropend()
#print(drop)
d = d[jindex:num1]
dg = dg[jindex:num1]
drop2 = d
drop2g = dg
# drop1plot = drop1.plot(y=accName, ylabel="Deceleration (g)", title="drop 1")
#drop1plot = plt.plot(acc1Name, acc1Name[num1], "x")
integration(d)
drop2 = d
areafind()
acc2 = acc2[jindex:num1]
bc(acc2)
qdyn2 = qdyn
if n == 3 :
drop3 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop3g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop3 = pd.DataFrame(drop3) # makes dataframe including all data within the start and end points of the drop
drop3g = pd.DataFrame(drop3g)
dg = drop3g
d = drop3
accPick(dg, d) # chooses what accelerometer to use
acc3 = acc
acc3Name = accName
acc3Nameg = accNameg
findchangepts() #finds the start of the drop
finddropend() #dinds the end of the drop
d = d[jindex:num1] #shortens the dataframe to only include the data during penetration (jindex = start, num1 = end)
drop3 = d
integration(d) #solves for velocity and acceleration
drop3 = d #this dataframe now includes velocity and acceleration data
if n == 4 :
drop4 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop4g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop4 = pd.DataFrame(drop4) # makes dataframe including all data within the start and end points of the drop
drop4g = pd.DataFrame(drop4g)
dg = drop4g # chooses what accelerometer to use based on the max g
d = drop4
accPick(dg, d) # chooses what accelerometer to use
acc4 = acc
acc4Name = accName
acc4Nameg = accNameg
#print(num1, num2)
#print(acc)
#print(acc.iloc[1])
findchangepts()
finddropend()
#print(drop)
d = d[jindex:num1]
#print(np.size(d))
drop4 = d
# drop1plot = drop1.plot(y=accName, ylabel="Deceleration (g)", title="drop 1")
#drop1plot = plt.plot(acc1Name, acc1Name[num1], "x")
integration(d)
drop4 = d
if n == 5 :
drop5 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop5g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop5 = pd.DataFrame(drop5) # makes dataframe including all data within the start and end points of the drop
drop5g = pd.DataFrame(drop5g)
dg = drop5g # chooses what accelerometer to use based on the max g
d = drop5
accPick(dg, d) # chooses what accelerometer to use
acc5 = acc
acc5Name = accName
acc5Nameg = accNameg
finddropend()
#print(num1, num2)
#print(acc)
#print(acc.iloc[1])
findchangepts()
#print(drop)
d = d[jindex:num1]
drop5 = d
# drop1plot = drop1.plot(y=accName, ylabel="Deceleration (g)", title="drop 1")
#drop1plot = plt.plot(acc1Name, acc1Name[num1], "x")
integration(d)
drop5 = d
if n == 6 :
drop6 = dfCal[dropstart:dropend] # start and end points of the drop in m/s^2
drop6g = dfCalg[dropstart:dropend] # start and end points of the drop in g
drop6 = pd.DataFrame(drop6) # makes dataframe including all data within the start and end points of the drop
drop6g = pd.DataFrame(drop6g)
dg = drop6g # chooses what accelerometer to use based on the max g
d = drop6
accPick(dg, d) # chooses what accelerometer to use
acc6 = acc
acc6Name = accName
acc6Nameg = accNameg
finddropend()
#print(num1, num2)
#print(acc)
#print(acc.iloc[1])
findchangepts()
#print(drop)
d = d[jindex:num1]
drop6 = d
# drop1plot = drop1.plot(y=accName, ylabel="Deceleration (g)", title="drop 1")
#drop1plot = plt.plot(acc1Name, acc1Name[num1], "x")
integration(d)
drop6 = d
n = n + 1
a = a + 1
# GENERATE PLOTS
def overviewplot(): #Plot showing all accellerometers and pore pressure readings
fig, (ax1, ax2) = plt.subplots(2)
ax1.plot(time, g2g, label="2g")
ax1.plot(time, g18g, label="18g")
ax1.plot(time, g50g, label="50g")
#plt.plot(time, ppm)
#ax1.plot(time, g200g, label="200g")
#plt.plot(time, gX55g, label="2g")
#plt.plot(time, gY55g, label="2g")
ax1.plot(time, g250g, label="250g")
ax1.legend()
ax1.set(ylabel="Deceleration (g)")
ax1.set(xlabel="Time (s)")
ax1.set_title("BD file "+fileNum)
ax2.plot(time, ppm, label="Pore Pressure")
ax2.set(ylabel="Pore Pressure (kPa)")
ax2.set(xlabel="Time (s)")
plt.show()
def qdynplot(drop, qdyn): #Plot showing dynamic bearing capacity vs time
fig, (ax1) = plt.subplots(1)
ax1.plot(qdyn, drop["Penetration Depth (m)"]*100, label="Qdyn") #color = "k", marker = 11
ax1.plot(bctable.iloc[:,0], drop["Penetration Depth (m)"]*100, label=str(bctable.columns[0]))
ax1.plot(bctable.iloc[:,len(bctable.columns)-1], drop["Penetration Depth (m)"]*100, label=str(bctable.columns[len(bctable.columns)-1]))
for i in range(1,len(bctable.columns)-1):
ax1.plot(bctable.iloc[:,i], drop["Penetration Depth (m)"]*100, label=str(bctable.columns[i]), color = "k")
ax1.set(xlabel="Bearing Capacity (kPa)", ylabel="Penetration Depth (cm)")
ax1.set_xlim(0,)
ax1.invert_yaxis()
ax1.legend(["Qdyn", str(bctable.columns[0]), str(bctable.columns[len(bctable.columns)-1])])
ax1.set_title("Bearing Capacity- "+fileNum+ " "+str(n))
plt.show()
def qsbcplot(drop):
fig, (ax1) = plt.subplots(1)
ax1.invert_yaxis()
plt.show()
def peakplot(): # Plot showing peak deceleration
peakplot = plt.plot(x)
peakplot = plt.plot(peaks, x[peaks], "x")
plt.show()
def integplot(drop, accName): #Deceleration,Velocity,and penetration depth vs time plots
fig, (ax1, ax2, ax3) = plt.subplots(3)
ax1.plot(drop["Time (s)"], drop[accName], color = "k", marker = 11)
ax1.set(ylabel="Deceleration (m/s^2)", xlabel="Time(s)")
ax2.plot(drop["Time (s)"], drop['Velocity (m/s)'] , color = "k", marker = 11)
ax2.set(ylabel="Velocity (m/s)", xlabel="Time(s)")
ax3.plot(drop["Time (s)"], drop["Penetration Depth (m)"] , color = "k", marker = 11)
ax3.set(ylabel="Penetration Depth (m)", xlabel="Time(s)")
plt.show()
def depthplot(dropg, drop, accNameg): #Velocity and develeration vs. penetration depth
fig, (ax1) = plt.subplots(1)
ax1.plot(dropg[accNameg], drop["Penetration Depth (m)"]*100, color = "k", linestyle = "solid") #marker = 11
ax1.plot(drop["Velocity (m/s)"], drop["Penetration Depth (m)"]*100, color = "k", linestyle = "dashed")
ax1.set(xlabel="Deceleration (g) and Velocity (m/s)", ylabel="Penetration Depth (cm)")
ax1.invert_yaxis()
ax1.legend(["Deceleration (g)", "Velocity (m/s)"])
plt.show()
'''overviewplot()
peakplot()
integplot(drop1,acc1Name)
integplot(drop2,acc2Name)
integplot(drop3,acc3Name)
depthplot(drop2g,drop2,acc2Nameg)'''
qdynplot(drop2, qdyn2)