From d9d496c8f3089d821b363430a731ee28edd70d5c Mon Sep 17 00:00:00 2001 From: Zhicun <59141989+ivy-lv11@users.noreply.github.com> Date: Mon, 5 Feb 2024 11:12:47 +0800 Subject: [PATCH] add phixtral and optimize phi-moe (#10052) --- README.md | 1 + python/llm/README.md | 1 + .../Model/phixtral/README.md | 73 +++++++++ .../Model/phixtral/generate.py | 72 +++++++++ .../PyTorch-Models/Model/phixtral/README.md | 64 ++++++++ .../PyTorch-Models/Model/phixtral/generate.py | 66 ++++++++ .../Model/phixtral/README.md | 119 +++++++++++++++ .../Model/phixtral/generate.py | 80 ++++++++++ .../PyTorch-Models/Model/phixtral/README.md | 123 +++++++++++++++ .../PyTorch-Models/Model/phixtral/generate.py | 80 ++++++++++ .../llm/src/bigdl/llm/transformers/convert.py | 11 ++ .../bigdl/llm/transformers/models/phixtral.py | 144 ++++++++++++++++++ 12 files changed, 834 insertions(+) create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/README.md create mode 100644 python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/generate.py create mode 100644 python/llm/example/CPU/PyTorch-Models/Model/phixtral/README.md create mode 100644 python/llm/example/CPU/PyTorch-Models/Model/phixtral/generate.py create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/README.md create mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/generate.py create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/phixtral/README.md create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/phixtral/generate.py create mode 100644 python/llm/src/bigdl/llm/transformers/models/phixtral.py diff --git a/README.md b/README.md index b5746d9e5c7..86b6ebd20e6 100644 --- a/README.md +++ b/README.md @@ -177,6 +177,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Yi | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yi) | | BlueLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/bluelm) | | SOLAR | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/solar) | +| Phixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral) | | InternLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm2) | ***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).*** diff --git a/python/llm/README.md b/python/llm/README.md index 2a8369be05a..2389cc0b8c9 100644 --- a/python/llm/README.md +++ b/python/llm/README.md @@ -75,6 +75,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Yi | [link](example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](example/GPU/HF-Transformers-AutoModels/Model/yi) | | BlueLM | [link](example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](example/GPU/HF-Transformers-AutoModels/Model/bluelm) | | SOLAR | [link](example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](example/GPU/HF-Transformers-AutoModels/Model/solar) | +| Phixtral | [link](example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](example/GPU/HF-Transformers-AutoModels/Model/phixtral) | | InternLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm2) | ### Working with `bigdl-llm` diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/README.md new file mode 100644 index 00000000000..4382aec0ee9 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/README.md @@ -0,0 +1,73 @@ +# Phixtral-4x2_8 + +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on phi models. For illustration purposes, we utilize the [microsoft/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) as a reference phixtral model. + +> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). +> +> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phixtral model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +pip install einops # additional package required for phi to conduct generation +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the phixtral model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the phixtral model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mlabonne/phixtral-4x2_8'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `What is AI?`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.4 Sample Output +#### [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +Question:What is AI? + +Answer: +-------------------- Output -------------------- +Question:What is AI? + +Answer: AI, or artificial intelligence, is the simulation of human intelligence in machines that are programmed to think and learn like humans. +``` \ No newline at end of file diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/generate.py new file mode 100644 index 00000000000..276fa09e334 --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral/generate.py @@ -0,0 +1,72 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer, GenerationConfig +from bigdl.llm import optimize_model +# you could tune the prompt based on your own model, +# here the prompt tuning refers to # TODO: https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_mixformer_sequential.py +PHI1_5_PROMPT_FORMAT = " Question:{prompt}\n\n Answer:" +generation_config = GenerationConfig(use_cache = True) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phixtral model') + parser.add_argument('--repo-id-or-model-path', type=str, default="mlabonne/phixtral-4x2_8", + help='The huggingface repo id for the phi model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + from bigdl.llm.transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI1_5_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with BigDL-LLM INT4 optimizations + + # Note that phixtral uses GenerationConfig to enable 'use_cache' + output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) + + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/phixtral/README.md b/python/llm/example/CPU/PyTorch-Models/Model/phixtral/README.md new file mode 100644 index 00000000000..f2bf2412190 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/phixtral/README.md @@ -0,0 +1,64 @@ +# Phixtral +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen-VL models. For illustration purposes, we utilize the [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) as a reference Phixtral model. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phixtral model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option +pip install einops +``` + +### 2. Run +After setting up the Python environment, you could run the example by following steps. + +#### 2.1 Client +On client Windows machines, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-LLM env variables +source bigdl-llm-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' +``` +More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. + +#### 2.3 Arguments Info +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the phixtral model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mlabonne/phixtral-4x2_8'`. +- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. + +#### 2.4 Sample Output +#### [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +Question:What is AI? + +Answer: +-------------------- Output -------------------- +Question:What is AI? + +Answer: AI, or artificial intelligence, is the simulation of human intelligence in machines that are programmed to think and learn like humans. +``` \ No newline at end of file diff --git a/python/llm/example/CPU/PyTorch-Models/Model/phixtral/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/phixtral/generate.py new file mode 100644 index 00000000000..e66863adc67 --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/phixtral/generate.py @@ -0,0 +1,66 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer, GenerationConfig +from bigdl.llm import optimize_model +# you could tune the prompt based on your own model, +# here the prompt tuning refers to # TODO: https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_mixformer_sequential.py +PHI1_5_PROMPT_FORMAT = " Question:{prompt}\n\n Answer:" +generation_config = GenerationConfig(use_cache = True) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phixtral model') + parser.add_argument('--repo-id-or-model-path', type=str, default="mlabonne/phixtral-4x2_8", + help='The huggingface repo id for the phi model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + from transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True) + model = optimize_model(model) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = PHI1_5_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + + # Note that phixtral uses GenerationConfig to enable 'use_cache' + output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) + + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/README.md new file mode 100644 index 00000000000..b271f5bada5 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/README.md @@ -0,0 +1,119 @@ +# Phixtral +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on phixtral models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) as a reference phixtral model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a InternLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 libuv +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +``` + +### 2. Configures OneAPI environment variables +#### 2.1 Configurations for Linux +```bash +source /opt/intel/oneapi/setvars.sh +``` + +#### 2.2 Configurations for Windows +```cmd +call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" +``` +> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A300-Series or Pro A60 + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For other Intel dGPU Series + +There is no need to set further environment variables. + +
+ +> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the phi model (e.g. `mlabonne/phixtral-4x2_8`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mlabonne/phixtral-4x2_8'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +Question:What is AI? + +Answer: +-------------------- Output -------------------- +Question:What is AI? + +Answer: AI, or artificial intelligence, is the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of computer systems that +``` diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/generate.py new file mode 100644 index 00000000000..e806ba5431a --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/phixtral/generate.py @@ -0,0 +1,80 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer, GenerationConfig +import intel_extension_for_pytorch as ipex + + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to # TODO: https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_mixformer_sequential.py +PHI1_5_PROMPT_FORMAT = " Question:{prompt}\n\n Answer:" +generation_config = GenerationConfig(use_cache = True) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi model') + parser.add_argument('--repo-id-or-model-path', type=str, default="mlabonne/phixtral-4x2_8", + help='The huggingface repo id for the phixtral model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + from bigdl.llm.transformers import AutoModel,AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + # for phi-moe + with torch.inference_mode(): + prompt = PHI1_5_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + + # ipex model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + generation_config = generation_config) + + # start inference without profiling + st = time.time() + output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/phixtral/README.md b/python/llm/example/GPU/PyTorch-Models/Model/phixtral/README.md new file mode 100644 index 00000000000..29d0c8869a4 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/phixtral/README.md @@ -0,0 +1,123 @@ +# phixtral +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate phi-1_5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) as a reference phixtral model. + +## Requirements +To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a phixtral model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install einops # additional package required for phixtral to conduct generation +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 libuv +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +pip install einops # additional package required for phixtral to conduct generation +``` + +### 2. Configures OneAPI environment variables +#### 2.1 Configurations for Linux +```bash +source /opt/intel/oneapi/setvars.sh +``` + +#### 2.2 Configurations for Windows +```cmd +call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" +``` +> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A300-Series or Pro A60 + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For other Intel dGPU Series + +There is no need to set further environment variables. + +
+ +> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --prompt 'What is AI?' +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the phixtral model (e.g. `mlabonne/phixtral-4x2_8`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mlabonne/phixtral-4x2_8'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [mlabonne/phixtral-4x2_8](https://huggingface.co/mlabonne/phixtral-4x2_8) + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +Question:What is AI? + +Answer: +-------------------- Output -------------------- +Question:What is AI? + +Answer: AI, or artificial intelligence, is the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of computer systems that +``` \ No newline at end of file diff --git a/python/llm/example/GPU/PyTorch-Models/Model/phixtral/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/phixtral/generate.py new file mode 100644 index 00000000000..991377fd2d5 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/phixtral/generate.py @@ -0,0 +1,80 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import AutoTokenizer, GenerationConfig +import intel_extension_for_pytorch as ipex +from bigdl.llm import optimize_model + + +# you could tune the prompt based on your own model, +# here the prompt tuning refers to # TODO: https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_mixformer_sequential.py +PHI1_5_PROMPT_FORMAT = " Question:{prompt}\n\n Answer:" +generation_config = GenerationConfig(use_cache = True) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi model') + parser.add_argument('--repo-id-or-model-path', type=str, default="mlabonne/phixtral-4x2_8", + help='The huggingface repo id for the phixtral model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + # Load huggingface model with optimize_model in BigDL + from transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(model_path, + trust_remote_code=True) + model = optimize_model(model) + + model = model.to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + # Generate predicted tokens + # for phi-moe + with torch.inference_mode(): + prompt = PHI1_5_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + + # ipex model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict, + generation_config = generation_config) + + # start inference without profiling + st = time.time() + output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/src/bigdl/llm/transformers/convert.py b/python/llm/src/bigdl/llm/transformers/convert.py index 38910d3de99..518de262ae8 100644 --- a/python/llm/src/bigdl/llm/transformers/convert.py +++ b/python/llm/src/bigdl/llm/transformers/convert.py @@ -912,6 +912,17 @@ def _optimize_post(model, lightweight_bmm=False): convert_forward(model, module.MixtralBLockSparseTop2MLP, mixtral_mlp_forward) + elif model.config.model_type == "phi-msft": + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from bigdl.llm.transformers.models.phixtral import phixtral_moeblock_forward, \ + phixtral_mlp_forward + convert_forward(model, + module.MoE, + phixtral_moeblock_forward) + convert_forward(model, + module.MLP, + phixtral_mlp_forward) elif model.config.model_type == "mistral": if model.config.architectures is not None and \ model.config.architectures[0] == "MixtralForCausalLM": diff --git a/python/llm/src/bigdl/llm/transformers/models/phixtral.py b/python/llm/src/bigdl/llm/transformers/models/phixtral.py new file mode 100644 index 00000000000..272ab53b5c6 --- /dev/null +++ b/python/llm/src/bigdl/llm/transformers/models/phixtral.py @@ -0,0 +1,144 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py + +# coding=utf-8 +# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" PyTorch Phixtral model.""" +import math +from typing import Optional, Tuple + +import torch +from torch import nn +import torch.nn.functional as F +from bigdl.llm.ggml.quantize import ggml_tensor_qtype +from bigdl.llm.utils.common import invalidInputError +from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache +from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\ + apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36 +from bigdl.llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path +from bigdl.llm.transformers.models.utils import use_flash_attention +from bigdl.llm.transformers.models.utils import mlp_fusion_check + + +KV_CACHE_ALLOC_BLOCK_LENGTH = 256 + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). + The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) + to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, + n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def phixtral_moeblock_forward(self, hidden_states: torch.Tensor): + batch_size, sequence_length, hidden_dim = hidden_states.shape + hidden_states = hidden_states.view(-1, hidden_dim) + bs = hidden_states.shape[0] + # router_logits: (batch * sequence_length, n_experts) + router_logits = self.gate(hidden_states) + + num_local_experts = len(self.mlp) + + routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) + top_k = self.num_experts_per_tok + routing_weights, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + routing_weights /= routing_weights.sum(dim=-1, keepdim=True) + # we cast back to the input dtype + routing_weights = routing_weights.to(hidden_states.dtype) + + if bs > 1: + final_hidden_states = torch.zeros( + (batch_size * sequence_length, hidden_dim), + dtype=hidden_states.dtype, + device=hidden_states.device + ) + # One hot encode the selected experts to create an expert mask + # this will be used to easily index which expert is going to be sollicitated + expert_mask = torch.nn.functional.one_hot(selected_experts, + num_classes=num_local_experts).permute(2, 1, 0) + + # Loop over all available experts in the model and perform the computation on each expert + for expert_idx in range(num_local_experts): + expert_layer = self.mlp[expert_idx] + idx, top_x = torch.where(expert_mask[expert_idx]) + + if top_x.shape[0] == 0: + continue + + # in torch it is faster to index using lists than torch tensors + top_x_list = top_x.tolist() + idx_list = idx.tolist() + + # Index the correct hidden states and compute the expert hidden state for + # the current expert. We need to make sure to multiply the output hidden + # states by `routing_weights` on the corresponding tokens (top-1 and top-2) + current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) + current_hidden_states = expert_layer(current_state) + + # However `index_add_` only support torch tensors for indexing so we'll use + # the `top_x` tensor here. + final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) + else: + selected_experts = selected_experts[0].cpu().tolist() + for idx in range(top_k): + exp_id = selected_experts[idx] + expert_layer = self.mlp[exp_id] + weight = routing_weights[:, idx] + if idx == 0: + final_hidden_states = expert_layer(hidden_states) + else: + final_hidden_states = final_hidden_states + expert_layer(hidden_states) + + final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) + return final_hidden_states + + +def phixtral_mlp_forward( + self, + x: torch.Tensor, +) -> torch.Tensor: + hidden_states = self.fc1(x) + hidden_states = self.act(hidden_states) + hidden_states = self.fc2(hidden_states) + + return hidden_states