Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

commit em algorithm examples #9

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
324 changes: 324 additions & 0 deletions EM/EM.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
{
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

谢谢啦,我周末运行试一下

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

不用客气,您写的代码对我的帮助很大,我也是尽我所能回馈大家,

"cells": [
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import copy\n",
"import math\n",
"import matplotlib.pyplot as plt\n",
"# mathplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 创建数据集"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"一个样本中有两个高斯分布,均值不同,方差相同;\n",
"实例:从一个学校里随机抽取学生,抽取n个,其中包含a个女学生,b个男学生。"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# n 样本数量 ,k 几个高斯分布,sigma:方差,real_mu 包含两个分布的真实期望\n",
"\n",
"def create_data(n,k,real_mu,sigma):\n",
" X = np.zeros((n,1))\n",
" for i in range(0,n):\n",
"# 随机抽取 男女生\n",
" if np.random.random()>0.5:\n",
" X[i][0] = np.random.normal()*sigma + real_mu[0]\n",
" else:\n",
" X[i][0] = np.random.normal()*sigma + real_mu[1]\n",
" return X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 高斯分布"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"def gaussian_dist(x,mu,sigma):\n",
" exponent = np.exp(-np.power((x-mu),2)/(2*np.power(sigma,2)))\n",
" result = 1/np.power(2*np.pi*sigma**2 , 1/2) *exponent\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Expectation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"固定$\\theta$ ,优化条件期望"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"简单而言:已知 $\\theta$ ,求条件期望,即在某个样本结果出现的条件下,是男生或者女生的概率"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def e_step(X,mu,sigma,expectations):\n",
" length = X.shape[0]\n",
" k = mu.shape[0]\n",
"\n",
" for i in range(0,length):\n",
" denominator = 0;\n",
" for j in range(0,k):\n",
" denominator += gaussian_dist(X[i][0],mu[j],sigma)\n",
" \n",
" for j in range(0,k): \n",
" numberator = gaussian_dist(X[i][0],mu[j],sigma) \n",
" expectations[i][j]= numberator / denominator\n",
" \n",
" return expectations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Maximization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"已知条件期望,求解$\\theta$在此次迭代中的最大值"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# 这种方法更直观,\n",
"# def m_step(X,mu,sigma,expectations):\n",
"# n = X.shape[0]\n",
"# k = mu.shape[0] \n",
"# for i in range(0,k): \n",
"# numberator = 0\n",
"# denominator = 0\n",
"# for j in range(0,n):\n",
"# numberator += expectations[j,i]*X[j,0]\n",
"# denominator += expectations[j,i]\n",
" \n",
"# mu[i] = numberator/denominator\n",
" \n",
"# return mu"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# 向量法,简单高效\n",
"def m_step(X,mu,sigma,expectations):\n",
" numbers = np.transpose(X).dot(expectations)\n",
" denominator= np.sum(expectations,axis=0)\n",
"\n",
" result = numbers/denominator\n",
"# result是1*2的矩阵,\n",
"# 我们需要返回一个一维向量,包含两个分量而已。\n",
" mu[0] = result[0][0]\n",
" mu[1] = result[0][1]\n",
" return mu"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 训练"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def train(X,sigma,expectations,iteration,epsilon):\n",
" mu = np.random.random(2)\n",
" for i in range(0,iteration):\n",
" # deepcopy 使得两个值相互不影响\n",
" old_mu = copy.deepcopy(mu)\n",
" # E步:求出条件期望\n",
" expectations = e_step(X,mu,sigma,expectations)\n",
" \n",
" print(i,mu)\n",
" # M步,利用E步的期望,求最大的theta()\n",
" mu = m_step(X,mu,sigma,expectations)\n",
" # 如果两次迭代的差值小于阈值,则训练结束,也可以认为找到局部最优值,\n",
" if np.abs(np.sum(old_mu) - np.sum(mu)) < epsilon:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 [0.71085143 0.97453594]\n",
"1 [168.60550916 169.62356611]\n",
"2 [167.44608098 171.32745846]\n",
"3 [163.31669663 175.570302 ]\n",
"4 [160.18984499 179.48883559]\n",
"5 [160.04240354 180.32256705]\n",
"6 [160.14223833 180.53002579]\n",
"7 [160.19102044 180.60482685]\n",
"8 [160.21080304 180.63380363]\n",
"9 [160.21861444 180.64513455]\n",
"10 [160.22168114 180.64957042]\n",
"11 [160.22288306 180.65130723]\n",
"12 [160.22335384 180.65198726]\n",
"13 [160.22353819 180.65225352]\n",
"14 [160.22361038 180.65235778]\n",
"15 [160.22363865 180.6523986 ]\n",
"16 [160.22364971 180.65241458]\n",
"17 [160.22365405 180.65242084]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADYhJREFUeJzt3X+MZXdZx/H3hy5FKyCtO8WGdtxK\noEljIpSRVBHQFgSKofgD0yYgCmYjkdo2IilBgcR/KiKKidEstFItKQg0gopKrVRiAgvdpdCWpZQf\nBbYtLYQI/EXBPv5xz2aHzcx2554zs3Mf3q9kcs895+zc59nvvZ8599wf31QVkqReHna8C5AkTc9w\nl6SGDHdJashwl6SGDHdJashwl6SGDHdJashwl6SGDHdJamjHVt7Yzp07a9euXVt5k5K08Pbt2/f1\nqlrayL/Z0nDftWsXN99881bepCQtvCRf2ui/8bSMJDVkuEtSQ4a7JDVkuEtSQ4a7JDX0kOGe5Ook\n9ye5bdW6U5LckOTO4fLkzS1TkrQRx3Lk/nbguUesuwK4saqeANw4XJckbRMPGe5V9WHgG0esvhC4\nZli+BnjhxHVJkkaY95z7Y6vqXoDh8tTpSpIkjbXpn1BNshvYDbC8vLzZN6cFt+uKf11z/V1XPn+L\nK5EW27xH7vclOQ1guLx/vR2rak9VrVTVytLShr4aQZI0p3nD/f3AS4fllwLvm6YcSdIUjuWtkNcB\nHwHOSnIwycuBK4FnJ7kTePZwXZK0TTzkOfequnidTedPXIskaSJ+QlWSGjLcJakhw12SGjLcJakh\nw12SGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGtr0OVS1eJzH\ndHubanwc5948cpekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJek\nhgx3SWrIcJekhgx3SWrIcJekhgx3SWpoVLgnuTzJ7UluS3Jdkh+aqjBJ0vzmDvckjwN+H1ipqp8C\nTgAumqowSdL8xp6W2QH8cJIdwEnAPeNLkiSNNXe4V9XdwJuALwP3At+sqg9OVZgkaX5zT5Cd5GTg\nQuBM4H+Bdyd5cVVde8R+u4HdAMvLyyNK1UPpPOGxk0JLGzPmtMyzgC9W1deq6rvA9cDPHblTVe2p\nqpWqWllaWhpxc5KkYzUm3L8MnJvkpCQBzgcOTFOWJGmMMefc9wLvAfYDtw6/a89EdUmSRpj7nDtA\nVb0eeP1EtUiSJuInVCWpIcNdkhoy3CWpIcNdkhoy3CWpIcNdkhoy3CWpIcNdkhoy3CWpIcNdkhoy\n3CWpIcNdkhoy3CWpIcNdkhoy3CWpIcNdkhoaNVmHFsN6k0Ifz9t2Qur+jna/c/w3n0fuktSQ4S5J\nDRnuktSQ4S5JDRnuktSQ4S5JDRnuktSQ4S5JDRnuktSQ4S5JDRnuktSQ4S5JDRnuktSQ4S5JDRnu\nktSQ4S5JDY0K9ySPSfKeJJ9JciDJz05VmCRpfmNnYnoL8O9V9etJTgROmqAmSdJIc4d7kkcDzwB+\nC6CqHgAemKYsSdIYY07L/CTwNeDvknwiyduS/MhEdUmSRhhzWmYHcA5wSVXtTfIW4Argj1fvlGQ3\nsBtgeXl5xM394DmeE1uvZcoJj7dbb1uha89d+1p0Y47cDwIHq2rvcP09zML++1TVnqpaqaqVpaWl\nETcnSTpWc4d7VX0V+EqSs4ZV5wOfnqQqSdIoY98tcwnwjuGdMl8Afnt8SZKksUaFe1XdAqxMVIsk\naSJ+QlWSGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGjLcJakhw12SGjLcJakh\nw12SGjLcJakhw12SGho7WYcEOI/mdrZIY7NerRudo1ceuUtSS4a7JDVkuEtSQ4a7JDVkuEtSQ4a7\nJDVkuEtSQ4a7JDVkuEtSQ4a7JDVkuEtSQ4a7JDVkuEtSQ4a7JDVkuEtSQ4a7JDU0OtyTnJDkE0n+\nZYqCJEnjTXHkfilwYILfI0mayKhwT3I68HzgbdOUI0mawtgj978EXg08OEEtkqSJzD1BdpJfBu6v\nqn1JfuEo++0GdgMsLy/Pe3OtLdIExtuNEyofttn3o0W6n3q/GHfk/jTgBUnuAt4JnJfk2iN3qqo9\nVbVSVStLS0sjbk6SdKzmDveqek1VnV5Vu4CLgP+qqhdPVpkkaW6+z12SGpr7nPtqVXUTcNMUv0uS\nNJ5H7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z\n7pLUkOEuSQ0Z7pLUkOEuSQ1NMlmHvt8iTSTc1UbHYKMTKjvG4/j/t/k8cpekhgx3SWrIcJekhgx3\nSWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWrIcJekhgx3SWpo\n7nBPckaSDyU5kOT2JJdOWZgkaX5jZmL6HvAHVbU/yaOAfUluqKpPT1SbJGlOcx+5V9W9VbV/WP42\ncAB43FSFSZLmN8kcqkl2AU8G9q6xbTewG2B5eXmKm5O0ibbj/KYbneNWE7ygmuSRwHuBy6rqW0du\nr6o9VbVSVStLS0tjb06SdAxGhXuShzML9ndU1fXTlCRJGmvMu2UCXAUcqKo3T1eSJGmsMUfuTwNe\nApyX5Jbh54KJ6pIkjTD3C6pV9T9AJqxFkjQRP6EqSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEu\nSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ0Z7pLUkOEuSQ1NMkH2VjheE+QebbJgJ+eVtNp2\nmsjbI3dJashwl6SGDHdJashwl6SGDHdJashwl6SGDHdJashwl6SGDHdJashwl6SGDHdJashwl6SG\nDHdJashwl6SGDHdJashwl6SGRoV7kucmuSPJ55JcMVVRkqRx5g73JCcAfw08DzgbuDjJ2VMVJkma\n35gj96cCn6uqL1TVA8A7gQunKUuSNMaYcH8c8JVV1w8O6yRJx1mqar5/mLwIeE5V/c5w/SXAU6vq\nkiP22w3sHq6eBdyxavNO4OtzFbD9de2ta1/Qt7eufcEPTm8/UVVLG/nHO0bc8EHgjFXXTwfuOXKn\nqtoD7FnrFyS5uapWRtSwbXXtrWtf0Le3rn2BvR3NmNMyHweekOTMJCcCFwHvH/H7JEkTmfvIvaq+\nl+SVwH8AJwBXV9Xtk1UmSZrbmNMyVNUHgA+M+BVrnq5pomtvXfuCvr117QvsbV1zv6AqSdq+/PoB\nSWpoU8M9ydVJ7k9y2xrbXpWkkuwcrifJXw1fZfCpJOdsZm1jrNVXkjckuTvJLcPPBau2vWbo644k\nzzk+VR+b9cYsySVD/bcneeOq9QvR2zpj9q5V43VXkltWbVuIvmDd3p6U5KNDbzcneeqwfmEeZ7Bu\nbz+d5CNJbk3yz0kevWrbQoxbkjOSfCjJgeExdemw/pQkNyS5c7g8eVi/8XGrqk37AZ4BnAPcdsT6\nM5i9EPslYOew7gLg34AA5wJ7N7O2qfsC3gC8ao19zwY+CTwCOBP4PHDC8e5hg739IvCfwCOG66cu\nWm/r3RdXbf9z4HWL1tdRxuyDwPOG5QuAm1YtL8Tj7Ci9fRx45rD8MuBPFm3cgNOAc4blRwGfHep/\nI3DFsP4K4E/nHbdNPXKvqg8D31hj018ArwZWn/C/EPj7mvko8Jgkp21mffM6Sl9ruRB4Z1V9p6q+\nCHyO2Vc3bEvr9PYK4Mqq+s6wz/3D+oXp7WhjliTAbwDXDasWpi9Yt7cCDh3R/iiHP4OyMI8zWLe3\ns4APD8s3AL82LC/MuFXVvVW1f1j+NnCA2Sf8LwSuGXa7BnjhsLzhcdvyc+5JXgDcXVWfPGJTh68z\neOXwlOnqQ0+n6NHXE4GnJ9mb5L+T/MywvkNvAE8H7quqO4frHfq6DPizJF8B3gS8ZljfobfbgBcM\nyy/i8IcpF7K3JLuAJwN7gcdW1b0w+wMAnDrstuHetjTck5wEvBZ43Vqb11i3SG/l+Rvg8cCTgHuZ\nPc2Hxe8LZm+ZPZnZ08E/BP5xONrt0BvAxRw+aocefb0CuLyqzgAuB64a1nfo7WXA7yXZx+yUxgPD\n+oXrLckjgfcCl1XVt4626xrrjtrbVh+5P57ZubBPJrmL2VcW7E/y4xzj1xlsV1V1X1X9X1U9CLyV\nw08HF7qvwUHg+uEp4ceAB5l978XC95ZkB/CrwLtWrV74voCXAtcPy++m0f2xqj5TVb9UVU9h9kf5\n88OmheotycOZBfs7qurQWN136HTLcHnoFOiGe9vScK+qW6vq1KraVVW7mBV8TlV9ldlXF/zm8Krw\nucA3Dz09WQRHnP/6FWZPHWHW10VJHpHkTOAJwMe2ur6R/gk4DyDJE4ETmX2hUYfengV8pqoOrlrX\noa97gGcOy+cBh045LfTjDCDJqcPlw4A/Av522LQw4zY8870KOFBVb1616f3M/jAzXL5v1fqNjdsm\nvyJ8HbNTFN9lFuQvP2L7XRx+t0yYTf7xeeBWYGWrX8Ee0xfwD0PdnxoG4rRV+7926OsOhncwbNef\ndXo7EbiW2R+s/cB5i9bbevdF4O3A766x/0L0dZQx+3lgH7N3j+wFnjLsuzCPs6P0dimzd5d8FriS\n4cOYizRuw/jUkBe3DD8XAD8G3Mjsj/GNwCnzjpufUJWkhvyEqiQ1ZLhLUkOGuyQ1ZLhLUkOGuyQ1\nZLhLUkOGuyQ1ZLhLUkP/DzazO+/xdYuZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1b011947b38>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 200个抽样样本,(男女生集合)\n",
"n=200\n",
"k=2\n",
"# 真实期望\n",
"real_mu = np.array([180,160])\n",
"sigma=6\n",
"iteration=1000\n",
"epsilon=0.00001\n",
"expectations = np.zeros((n,k))\n",
"X = create_data(n,k,real_mu,sigma)\n",
"train(X,sigma,expectations,iteration, epsilon)\n",
"plt.hist(X,50)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
},
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "249px"
},
"toc_section_display": true,
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 2
}