diff --git a/seg/utils/dataloaders.py b/seg/utils/dataloaders.py index 1c11fdeedc..d4f9aa520f 100644 --- a/seg/utils/dataloaders.py +++ b/seg/utils/dataloaders.py @@ -485,7 +485,7 @@ def __init__(self, self.im_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update n = len(shapes) # number of images - bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + bi = np.floor(np.arange(n) / batch_size).astype(np.int64) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n @@ -528,7 +528,7 @@ def __init__(self, elif mini > 1: shapes[i] = [1, 1 / mini] - self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int64) * stride # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) self.ims = [None] * n @@ -898,7 +898,7 @@ def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders impo b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.2 + 3 # pad - b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int64) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h) diff --git a/seg/utils/segment/plots.py b/seg/utils/segment/plots.py index eac46d9853..7cfd45a041 100644 --- a/seg/utils/segment/plots.py +++ b/seg/utils/segment/plots.py @@ -137,9 +137,9 @@ def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg' if mh != h or mw != w: mask = image_masks[j].astype(np.uint8) mask = cv2.resize(mask, (w, h)) - mask = mask.astype(np.bool) + mask = mask.astype(np.bool_) else: - mask = image_masks[j].astype(np.bool) + mask = image_masks[j].astype(np.bool_) with contextlib.suppress(Exception): im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 annotator.fromarray(im)