-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
432 lines (383 loc) · 16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# presto_pretrain_finetune, but in a notebook
import argparse
import json
import logging
from pathlib import Path
from typing import Optional, Tuple, cast
import pandas as pd
import torch
import torch.nn as nn
import xarray as xr
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from presto.dataops import BANDS_GROUPS_IDX
from presto.dataset import WorldCerealMaskedDataset as WorldCerealDataset
from presto.dataset import filter_remove_noncrops, target_maize
from presto.eval import WorldCerealEval
from presto.masking import MASK_STRATEGIES, MaskParamsNoDw
from presto.presto import (
LossWrapper,
Presto,
adjust_learning_rate,
param_groups_weight_decay,
)
from presto.utils import (
DEFAULT_SEED,
config_dir,
data_dir,
default_model_path,
device,
initialize_logging,
load_world_df,
plot_results,
plot_spatial,
seed_everything,
timestamp_dirname,
)
logger = logging.getLogger("__main__")
argparser = argparse.ArgumentParser()
argparser.add_argument("--model_name", type=str, default="")
argparser.add_argument("--path_to_config", type=str, default="")
argparser.add_argument(
"--output_dir",
type=str,
default="",
help="Parent directory to save output to, <output_dir>/wandb/ "
"and <output_dir>/output/ will be written to. "
"Leave empty to use the directory you are running this file from.",
)
argparser.add_argument("--n_epochs", type=int, default=20)
argparser.add_argument("--max_learning_rate", type=float, default=0.0001)
argparser.add_argument("--min_learning_rate", type=float, default=0.0)
argparser.add_argument("--finetune_train_masking", type=float, default=0.0)
argparser.add_argument("--warmup_epochs", type=int, default=2)
argparser.add_argument("--weight_decay", type=float, default=0.05)
argparser.add_argument("--batch_size", type=int, default=4096)
argparser.add_argument("--val_per_n_steps", type=int, default=-1, help="If -1, val every epoch")
argparser.add_argument(
"--mask_strategies",
type=str,
default=[
"group_bands",
"random_timesteps",
"chunk_timesteps",
"random_combinations",
],
nargs="+",
help="`all` will use all available masking strategies (including single bands)",
)
argparser.add_argument("--mask_ratio", type=float, default=0.75)
argparser.add_argument("--seed", type=int, default=DEFAULT_SEED)
argparser.add_argument("--num_workers", type=int, default=4)
argparser.add_argument("--wandb", dest="wandb", action="store_true")
argparser.add_argument("--wandb_org", type=str, default="nasa-harvest")
argparser.add_argument("--parquet_file", type=str, default="rawts-monthly_calval.parquet")
argparser.add_argument("--val_samples_file", type=str, default="VAL_samples.csv")
argparser.add_argument("--warm_start", dest="warm_start", action="store_true")
argparser.set_defaults(wandb=False)
argparser.set_defaults(warm_start=True)
args = argparser.parse_args().__dict__
model_name = args["model_name"]
seed: int = args["seed"]
num_workers: int = args["num_workers"]
path_to_config = args["path_to_config"]
warm_start = args["warm_start"]
wandb_enabled: bool = args["wandb"]
wandb_org: str = args["wandb_org"]
seed_everything(seed)
output_parent_dir = Path(args["output_dir"]) if args["output_dir"] else Path(__file__).parent
run_id = None
if wandb_enabled:
import wandb
run = wandb.init(
entity=wandb_org,
project="presto-worldcereal",
dir=output_parent_dir,
)
run_id = cast(wandb.sdk.wandb_run.Run, run).id
model_logging_dir = output_parent_dir / "output" / timestamp_dirname(run_id)
model_logging_dir.mkdir(exist_ok=True, parents=True)
initialize_logging(model_logging_dir)
logger.info("Using output dir: %s" % model_logging_dir)
num_epochs = args["n_epochs"]
val_per_n_steps = args["val_per_n_steps"]
max_learning_rate = args["max_learning_rate"]
min_learning_rate = args["min_learning_rate"]
warmup_epochs = args["warmup_epochs"]
weight_decay = args["weight_decay"]
batch_size = args["batch_size"]
# Default mask strategies and mask_ratio
mask_strategies: Tuple[str, ...] = tuple(args["mask_strategies"])
if (len(mask_strategies) == 1) and (mask_strategies[0] == "all"):
mask_strategies = MASK_STRATEGIES
mask_ratio: float = args["mask_ratio"]
parquet_file: str = args["parquet_file"]
val_samples_file: str = args["val_samples_file"]
path_to_config = config_dir / "default.json"
model_kwargs = json.load(Path(path_to_config).open("r"))
logger.info("Setting up dataloaders")
# Load the mask parameters
mask_params = MaskParamsNoDw(mask_strategies, mask_ratio)
df = pd.read_parquet(data_dir / parquet_file)
if (data_dir / val_samples_file).exists():
val_samples_df = pd.read_csv(data_dir / val_samples_file)
val_samples = val_samples_df.sample_id.tolist()
train_df, val_df = WorldCerealDataset.split_df(df, val_sample_ids=val_samples)
else:
train_df, val_df = WorldCerealDataset.split_df(df)
train_dataloader = DataLoader(
WorldCerealDataset(train_df, mask_params=mask_params),
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
)
val_dataloader = DataLoader(
WorldCerealDataset(val_df, mask_params=mask_params),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
)
validation_task = WorldCerealEval(
train_data=train_df.sample(1000, random_state=DEFAULT_SEED),
test_data=val_df.sample(1000, random_state=DEFAULT_SEED),
)
if val_per_n_steps == -1:
val_per_n_steps = len(train_dataloader)
logger.info("Setting up model")
if warm_start:
model_kwargs = json.load(Path(config_dir / "default.json").open("r"))
model = Presto.load_pretrained()
best_model_path: Optional[Path] = default_model_path
else:
if path_to_config == "":
path_to_config = config_dir / "default.json"
model_kwargs = json.load(Path(path_to_config).open("r"))
model = Presto.construct(**model_kwargs)
best_model_path = None
model.to(device)
param_groups = param_groups_weight_decay(model, weight_decay)
optimizer = optim.AdamW(param_groups, lr=max_learning_rate, betas=(0.9, 0.95))
mse = LossWrapper(nn.MSELoss())
training_config = {
"model": model.__class__,
"encoder": model.encoder.__class__,
"decoder": model.decoder.__class__,
"optimizer": optimizer.__class__.__name__,
"eo_loss": mse.loss.__class__.__name__,
"device": device,
"logging_dir": model_logging_dir,
**args,
**model_kwargs,
}
if wandb_enabled:
wandb.config.update(training_config)
lowest_validation_loss = None
best_val_epoch = 0
training_step = 0
num_validations = 0
with tqdm(range(num_epochs), desc="Epoch") as tqdm_epoch:
for epoch in tqdm_epoch:
# ------------------------ Training ----------------------------------------
total_eo_train_loss = 0.0
num_updates_being_captured = 0
train_size = 0
model.train()
for epoch_step, b in enumerate(tqdm(train_dataloader, desc="Train", leave=False)):
mask, x, y, start_month = b[0].to(device), b[2].to(device), b[3].to(device), b[6]
dw_mask, x_dw, y_dw = b[1].to(device), b[4].to(device).long(), b[5].to(device).long()
latlons, real_mask = b[7].to(device), b[9].to(device)
# zero the parameter gradients
optimizer.zero_grad()
lr = adjust_learning_rate(
optimizer,
epoch_step / len(train_dataloader) + epoch,
warmup_epochs,
num_epochs,
max_learning_rate,
min_learning_rate,
)
# Get model outputs and calculate loss
y_pred, dw_pred = model(
x, mask=mask, dynamic_world=x_dw, latlons=latlons, month=start_month
)
# set all SRTM timesteps except the first one to unmasked, so that
# they will get ignored by the loss function even if the SRTM
# value was masked
mask[:, 1:, BANDS_GROUPS_IDX["SRTM"]] = False
# set the "truly masked" values to unmasked, so they also get ignored in the loss
mask[real_mask] = False
loss = mse(y_pred[mask], y[mask])
loss.backward()
optimizer.step()
current_batch_size = len(x)
total_eo_train_loss += loss.item()
num_updates_being_captured += 1
train_size += current_batch_size
training_step += 1
# ------------------------ Validation --------------------------------------
if training_step % val_per_n_steps == 0:
total_eo_val_loss = 0.0
num_val_updates_captured = 0
val_size = 0
model.eval()
with torch.no_grad():
for b in tqdm(val_dataloader, desc="Validate"):
mask, x, y, start_month, real_mask = (
b[0].to(device),
b[2].to(device),
b[3].to(device),
b[6],
b[9].to(device),
)
dw_mask, x_dw = b[1].to(device), b[4].to(device).long()
y_dw, latlons = b[5].to(device).long(), b[7].to(device)
# Get model outputs and calculate loss
y_pred, dw_pred = model(
x, mask=mask, dynamic_world=x_dw, latlons=latlons, month=start_month
)
# set all SRTM timesteps except the first one to unmasked, so that
# they will get ignored by the loss function even if the SRTM
# value was masked
mask[:, 1:, BANDS_GROUPS_IDX["SRTM"]] = False
# set the "truly masked" values to unmasked, so they also get
# ignored in the loss
mask[real_mask] = False
loss = mse(y_pred[mask], y[mask])
current_batch_size = len(x)
total_eo_val_loss += loss.item()
num_val_updates_captured += 1
# ------------------------ Metrics + Logging -------------------------------
# train_loss now reflects the value against which we calculate gradients
train_eo_loss = total_eo_train_loss / num_updates_being_captured
val_eo_loss = total_eo_val_loss / num_val_updates_captured
if "train_size" not in training_config and "val_size" not in training_config:
training_config["train_size"] = train_size
training_config["val_size"] = val_size
if wandb_enabled:
wandb.config.update(training_config)
to_log = {
"train_eo_loss": train_eo_loss,
"val_eo_loss": val_eo_loss,
"training_step": training_step,
"epoch": epoch,
"lr": lr,
}
tqdm_epoch.set_postfix(loss=val_eo_loss)
val_task_results, _ = validation_task.finetuning_results(
model, sklearn_model_modes=["Random Forest"]
)
to_log.update(val_task_results)
if lowest_validation_loss is None or val_eo_loss < lowest_validation_loss:
lowest_validation_loss = val_eo_loss
best_val_epoch = epoch
model_path = model_logging_dir / Path("models")
model_path.mkdir(exist_ok=True, parents=True)
best_model_path = model_path / f"{model_name}{epoch}.pt"
logger.info(f"Saving best model to: {best_model_path}")
torch.save(model.state_dict(), best_model_path)
# reset training logging
total_eo_train_loss = 0.0
num_updates_being_captured = 0
train_size = 0
num_validations += 1
if wandb_enabled:
wandb.log(to_log)
model.train()
logger.info(f"Trained for {num_epochs} epochs, best model at {best_model_path}")
if best_model_path is not None:
logger.info("Loading best model: %s" % best_model_path)
best_model = torch.load(best_model_path, map_location=device)
model.load_state_dict(best_model)
else:
logger.info("Running eval with randomly init weights")
model_modes = ["Random Forest", "Regression", "CatBoostClassifier"]
full_eval = WorldCerealEval(
train_df,
val_df,
spatial_inference_savedir=model_logging_dir,
train_masking=args["finetune_train_masking"],
)
results, finetuned_model = full_eval.finetuning_results(model, sklearn_model_modes=model_modes)
logger.info(json.dumps(results, indent=2))
model_path = model_logging_dir / Path("models")
model_path.mkdir(exist_ok=True, parents=True)
finetuned_model_path = model_path / "finetuned_model.pt"
torch.save(finetuned_model.state_dict(), finetuned_model_path)
full_maize_eval = WorldCerealEval(
train_df,
val_df,
spatial_inference_savedir=model_logging_dir,
target_function=target_maize,
filter_function=filter_remove_noncrops,
name="WorldCerealMaize",
train_masking=args["finetune_train_masking"],
)
maize_results, maize_finetuned_model = full_maize_eval.finetuning_results(
model, sklearn_model_modes=model_modes
)
logger.info(json.dumps(maize_results, indent=2))
torch.save(maize_finetuned_model.state_dict(), model_path / "maize_finetuned_model.pt")
# not saving plots to wandb
plot_results(load_world_df(), results, model_logging_dir, show=True, to_wandb=False)
plot_results(
load_world_df(), maize_results, model_logging_dir, show=True, to_wandb=False, prefix="maize_"
)
# this is a bit hacky, but it lets us simulate crop/non-crop finetuning -> maize prediction head
full_maize_eval.name = "WorldCerealCropFinetuningMaizeHead"
crop_to_maize_results = full_maize_eval.finetuning_results_sklearn(
sklearn_model_modes=model_modes, finetuned_model=finetuned_model
)
logger.info(json.dumps(crop_to_maize_results, indent=2))
# missing data experiments
country_results = []
for country in ["Latvia", "Brazil", "Togo", "Madagascar"]:
for predict_maize in [True, False]:
kwargs = {
"train_data": train_df,
"test_data": val_df,
"countries_to_remove": [country],
"spatial_inference_savedir": model_logging_dir,
}
if predict_maize:
kwargs.update(
{
"target_function": target_maize,
"filter_function": filter_remove_noncrops,
"name": "WorldCerealMaize",
}
)
eval_task = WorldCerealEval(**kwargs)
results, finetuned_model = eval_task.finetuning_results(
model, sklearn_model_modes=model_modes
)
logger.info(json.dumps(results, indent=2))
country_results.append(results)
prefix = "maize" if predict_maize else ""
finetuned_model_path = model_path / f"{prefix}_finetuned_{country}_removed_model.pt"
torch.save(finetuned_model.state_dict(), finetuned_model_path)
missing_year = WorldCerealEval(
train_df,
val_df,
years_to_remove=[2021],
spatial_inference_savedir=model_logging_dir,
train_masking=args["finetune_train_masking"],
)
year_results, _ = missing_year.finetuning_results(model, sklearn_model_modes=model_modes)
logger.info(json.dumps(year_results, indent=2))
all_spatial_preds = list(model_logging_dir.glob("*.nc"))
for spatial_preds_path in all_spatial_preds:
preds = xr.load_dataset(spatial_preds_path)
output_path = model_logging_dir / f"{spatial_preds_path.stem}.png"
plot_spatial(preds, output_path, to_wandb=False)
if wandb_enabled:
wandb.log(results)
wandb.log(maize_results)
wandb.log(crop_to_maize_results)
for results in country_results:
wandb.log(results)
wandb.log(year_results)
if wandb_enabled and run:
run.finish()
logger.info(f"Wandb url: {run.url}")
logger.info(f"Wandb url: {run.url}")