forked from howl-anderson/seq2annotation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_with_dictionary.py
93 lines (65 loc) · 3.07 KB
/
main_with_dictionary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
from tensorflow.python.keras.layers import Embedding, Bidirectional, LSTM, Input
from tensorflow.python.keras.models import Sequential
from ioflow.configure import read_configure
from ioflow.corpus import get_corpus_processor
from seq2annotation.input import generate_tagset, Lookuper, \
index_table_from_file
from tf_crf_layer.layer import CRF
from tf_crf_layer.loss import crf_loss
from tf_crf_layer.metrics import crf_accuracy
from tokenizer_tools.tagset.converter.offset_to_biluo import offset_to_biluo
from tf_crf_layer.crf_helper import allowed_transitions, constraint_type
from seq2annotation.reportor import classification_report
config = read_configure()
corpus = get_corpus_processor(config)
corpus.prepare()
train_data_generator_func = corpus.get_generator_func(corpus.TRAIN)
eval_data_generator_func = corpus.get_generator_func(corpus.EVAL)
corpus_meta_data = corpus.get_meta_info()
tags_data = generate_tagset(corpus_meta_data['tags'])
train_data = list(train_data_generator_func())
eval_data = list(eval_data_generator_func())
tag_lookuper = Lookuper({v: i for i, v in enumerate(tags_data)})
vocab_data_file = 'seq2annotation/data/unicode_char_list.txt'
vocabulary_lookuper = index_table_from_file(vocab_data_file)
def preprocss(data):
raw_x = []
raw_y = []
for offset_data in data:
tags = offset_to_biluo(offset_data)
words = offset_data.text
tag_ids = [tag_lookuper.lookup(i) for i in tags]
word_ids = [vocabulary_lookuper.lookup(i) for i in words]
raw_x.append(word_ids)
raw_y.append(tag_ids)
maxlen = max(len(s) for s in raw_x)
x = tf.keras.preprocessing.sequence.pad_sequences(raw_x, maxlen,
padding='post') # right padding
# lef padded with -1. Indeed, any integer works as it will be masked
# y_pos = pad_sequences(y_pos, maxlen, value=-1)
# y_chunk = pad_sequences(y_chunk, maxlen, value=-1)
y = tf.keras.preprocessing.sequence.pad_sequences(raw_y, maxlen, value=0,
padding='post')
return x, y
transition_contrain = allowed_transitions(constraint_type.BIOUL, tag_lookuper.inverse_index_table)
train_x, train_y = preprocss(train_data)
test_x, test_y = preprocss(eval_data)
EPOCHS = 1
EMBED_DIM = 64
BiRNN_UNITS = 200
vacab_size = vocabulary_lookuper.size()
tag_size = tag_lookuper.size()
char_embed_layer = Embedding(vacab_size, EMBED_DIM, mask_zero=True)
char_bilstm_layer = Bidirectional(LSTM(BiRNN_UNITS // 2, return_sequences=True))(char_embed_layer)
dict_input_layer = Input(shape=)
dict_bilstm_layer = Bidirectional(LSTM(BiRNN_UNITS // 2, return_sequences=True))(dict_input_layer)
crf_layer = CRF(tag_size)
model.summary()
model.compile('adam', loss=crf_loss, metrics=[crf_accuracy])
model.fit(train_x, train_y, epochs=EPOCHS, validation_data=[test_x, test_y])
pred_y = model.predict(test_x)
test_y_pred = pred_y[test_x > 0]
test_y_true = test_y[test_x > 0]
print('\n---- Result of BiLSTM-CRF ----\n')
classification_report(test_y_true, test_y_pred, tags_data)