-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathheart_main.py
446 lines (378 loc) · 17.3 KB
/
heart_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
CFUN
Main configurations, train and test functions for the MM-WHS2017 Challenge dataset.
"""
import os
import json
import time
import numpy as np
import nibabel as nib
from config import Config
import model
import utils
import warnings
warnings.filterwarnings('ignore')
############################################################
# Configurations
############################################################
class HeartConfig(Config):
"""Configuration for training on the heart dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "heart"
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 7 # Background + seven other classes
# Number of training steps per epoch
STEPS_PER_EPOCH = 45
# Number of validation steps to run at the end of every training epoch.
VALIDATION_STEPS = 10
# Backbone network architecture
# Supported values are: P3D63, P3D131, P3D199.
# You can also provide a callable that should have the signature
# of model.resnet_graph. If you do so, you need to supply a callable
# to COMPUTE_BACKBONE_SHAPE as well
BACKBONE = "P3D19"
# The strides of each layer of the FPN Pyramid. These values
# are based on the P3D-Resnet backbone.
BACKBONE_STRIDES = [8, 16]
# Channel numbers in backbone.
BACKBONE_CHANNELS = [16, 32]
# Size of the fully-connected layers in the classification graph
FPN_CLASSIFY_FC_LAYERS_SIZE = 128 # 1024
# Channels in U-net of the mrcnn mask branch
UNET_MASK_BRANCH_CHANNEL = 20
# Size of the top-down layers used to build the feature pyramid
TOP_DOWN_PYRAMID_SIZE = 128 # 256
# Channels of the conv layer in RPN
RPN_CONV_CHANNELS = 256 # 512
# Length of square anchor side in pixels
# Note that the length of depth dimension is a half
# of height and width dimension
# Set some heart-specific values here
RPN_ANCHOR_SCALES = (64, 128)
# Anchor stride
# If 1 then anchors are created for each cell in the backbone feature map.
# If 2, then anchors are created for every other cell, and so on.
RPN_ANCHOR_STRIDE = 1 # Use a small amount of anchors here
# Ratios of anchors at each cell
# A value of 1 represents a square anchor
RPN_ANCHOR_RATIOS = [1]
# How many anchors per image to use for RPN training
RPN_TRAIN_ANCHORS_PER_IMAGE = 128 # 256
# ROIs kept before non-maximum suppression
PRE_NMS_LIMIT = 1000 # 6000
# ROIs kept after non-maximum suppression (training and inference)
POST_NMS_ROIS_TRAINING = 500 # 2000
POST_NMS_ROIS_INFERENCE = 64 # 1000
# If enabled, resizes instance masks to a smaller size to reduce
# memory load. Recommended when using high-resolution images.
USE_MINI_MASK = False # True
# Input image resizing
# Generally, use the "square" resizing mode for training and predicting
# and it should work well in most cases. In this mode, images are scaled
# up such that the small side is = IMAGE_MIN_DIM, but ensuring that the
# scaling doesn't make the long side > IMAGE_MAX_DIM. Then the image is
# padded with zeros to make it a square so multiple images can be put
# in one batch.
# Available resizing modes:
# none: No resizing or padding. Return the image unchanged.
# square: Resize and pad with zeros to get a square image
# of size [max_dim, max_dim, max_dim].
# pad64: Pads width and height with zeros to make them multiples of 64.
# If IMAGE_MIN_DIM or IMAGE_MIN_SCALE are not None, then it scales
# up before padding. IMAGE_MAX_DIM is ignored in this mode.
# The multiple of 64 is needed to ensure smooth scaling of feature
# maps up and down the 6 levels of the FPN pyramid (2**6=64).
# crop: Picks random crops from the image. First, scales the image based
# on IMAGE_MIN_DIM and IMAGE_MIN_SCALE, then picks a random crop of
# size IMAGE_MIN_DIM x IMAGE_MIN_DIM. Can be used in training only.
# IMAGE_MAX_DIM is not used in this mode.
# self: Self-designed resize strategy.
# Resize the image to [IMAGE_MAX_DIM, IMAGE_MAX_DIM, IMAGE_MIN_DIM, 1]
# image size is around [512, 512, 200-400]
IMAGE_RESIZE_MODE = "self"
IMAGE_MIN_DIM = 192
IMAGE_MAX_DIM = 320
# Minimum scaling ratio. Checked after MIN_IMAGE_DIM and can force further
# up scaling. For example, if set to 2 then images are scaled up to double
# the width and height, or more, even if MIN_IMAGE_DIM doesn't require it.
# However, in 'square' mode, it can be overruled by IMAGE_MAX_DIM.
IMAGE_MIN_SCALE = 0
# Number of color channels per image. grey-scale = 1, RGB = 3, RGB-D = 4
IMAGE_CHANNEL_COUNT = 1
# Number of ROIs per image to feed to classifier/mask heads
# The Mask-RCNN paper uses 512 but often the RPN doesn't generate
# enough positive proposals to fill this and keep a positive:negative
# ratio of 1:3. You can increase the number of proposals by adjusting
# the RPN NMS threshold.
TRAIN_ROIS_PER_IMAGE = 15 # 200
# Pooled ROIs
POOL_SIZE = [12, 12, 12] # [7, 7, 7]
MASK_POOL_SIZE = [96, 96, 96]
# Minimum probability value to accept a detected instance
# ROIs below this threshold are skipped
DETECTION_MIN_CONFIDENCE = 0.7
# Non-maximum suppression threshold for detection
DETECTION_NMS_THRESHOLD = 0.3
# Maximum number of ground truth instances to use in one image
MAX_GT_INSTANCES = 32 # 100
# Max number of final detections
DETECTION_MAX_INSTANCES = 32 # 100
# Loss weights for more precise optimization.
# Can be used for R-CNN training setup.
LOSS_WEIGHTS = {
"rpn_class_loss": 100., # correct detection in rpn is proved to be very important!
"rpn_bbox_loss": 50.,
"mrcnn_class_loss": 1.,
"mrcnn_bbox_loss": 20.,
"mrcnn_mask_loss": 1.,
"mrcnn_mask_edge_loss": 1.
}
# Train or freeze batch normalization layers
# None: Train BN layers. This is the normal mode
# False: Freeze BN layers. Good when using a small batch size
# True: (don't use). Set layer in training mode even when predicting
TRAIN_BN = False # Defaulting to False since batch size is often small
############################################################
# Dataset
############################################################
class HeartDataset(utils.Dataset):
def load_heart(self, subset):
"""Load a subset of the heart dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes. We have seven classes to add.
self.add_class("heart", 1, "a")
self.add_class("heart", 2, "b")
self.add_class("heart", 3, "c")
self.add_class("heart", 4, "d")
self.add_class("heart", 5, "e")
self.add_class("heart", 6, "f")
self.add_class("heart", 7, "g")
# Train or validation dataset?
assert subset in ["train", "val"]
# Load dataset info
info = json.load(open(args.data + "dataset.json"))
info = list(info['train_and_test'])
if subset == "train":
info = info[13:]
else:
info = info[:13]
# Add images and masks
for a in info:
image = nib.load(a['image']).get_data().copy()
height, width, depth = image.shape
self.add_image(
"heart",
image_id=a['image'], # use file name as a unique image id
path=a['image'],
width=width, height=height, depth=depth,
mask=a['label']) # save the path of the corresponding mask
def load_image(self, image_id):
"""Load the specified image and return a [H,W,D,C] Numpy array."""
# Load image
image = nib.load(self.image_info[image_id]['path']).get_data().copy()
return np.expand_dims(image, axis=-1)
def process_mask(self, mask):
"""Given the [depth, height, width] mask that may contains many classes of annotations.
Generate instance masks and a mask that only contains one class (heart) from it.
Returns:
masks: A np.int32 array of shape [depth, height, width, instance_count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
masks = np.zeros((self.num_classes, mask.shape[0], mask.shape[1], mask.shape[2]))
for i in range(self.num_classes):
masks[i][mask == i] = 1
# Return masks and array of class IDs of each instance.
return masks.astype(np.int32), np.arange(1, self.num_classes, 1, dtype=np.int32)
def load_mask(self, image_id):
"""Load the specified mask and return a [H,W,D] Numpy array.
Returns:
masks: A np.int32 array of shape [height, width, depth].
"""
# If not a heart dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "heart":
return super(self.__class__, self).load_mask(image_id)
# Convert masks to a bitmap mask of shape [height, width, depth, instance_count]
# Load the mask.
mask = nib.load(self.image_info[image_id]['mask']).get_data().copy()
return mask
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "heart":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
"""Train the model"""
# Training dataset
dataset_train = HeartDataset()
dataset_train.load_heart("train")
dataset_train.prepare()
# Validation dataset
dataset_val = HeartDataset()
dataset_val.load_heart("val")
dataset_val.prepare()
print("Train all layers")
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=1000)
############################################################
# Detection
############################################################
def test(model, limit, save, bbox):
"""Test the model.
model: the model to test.
limit: the images to be used.
save: whether to save the masks.
limit: whether to draw the bboxes.
"""
per_class_ious = []
info = json.load(open(args.data + "dataset.json"))
info = list(info['train_and_test'])
detect_time = 0
for path in info[:limit]:
path_image = path['image']
path_label = path['label']
image = nib.load(path_image).get_data().copy()
label = nib.load(path_label) # load the gt-masks
affine = label.affine # prepared to save the predicted mask later
label = label.get_data().copy()
image = np.expand_dims(image, -1)
start_time = time.time()
result = model.detect([image])[0]
detect_time += time.time() - start_time
print("detect_time:", time.time() - start_time)
"""The shape of result: a dict containing
{
"rois": final_rois, [N, (y1, x1, z1, y2, x2, z2)] in real coordinates
"class_ids": final_class_ids, [N]
"scores": final_scores, [N]
"mask": final_mask, [mask_shape[0], mask_shape[1], mask_shape[2]]
}"""
rois = result["rois"]
class_ids = result["class_ids"]
scores = result["scores"]
mask = result["mask"]
# Prepare the gt-masks and pred-masks to calculate the ious.
gt_masks = np.zeros((image.shape[0], image.shape[1], image.shape[2], model.config.NUM_CLASSES - 1))
pred_masks = np.zeros((image.shape[0], image.shape[1], image.shape[2], model.config.NUM_CLASSES - 1))
# Generate the per instance gt masks.
for j in range(model.config.NUM_CLASSES - 1):
gt_masks[:, :, :, j][label == j + 1] = 1
# Generate the per instance predicted masks.
for j in range(model.config.NUM_CLASSES - 1):
pred_masks[:, :, :, j][mask == j + 1] = 1
# calculate different kind of ious
per_class_iou = utils.compute_per_class_mask_iou(gt_masks, pred_masks)
per_class_ious.append(per_class_iou)
# Save the results
if save == "true":
# Draw bboxes
if bbox == "true":
y1, x1, z1, y2, x2, z2 = rois[0, :]
mask[y1, x1:x2, z1] = 10
mask[y1, x1:x2, z2] = 10
mask[y2, x1:x2, z1] = 10
mask[y2, x1:x2, z2] = 10
mask[y1:y2, x1, z1] = 10
mask[y1:y2, x2, z1] = 10
mask[y1:y2, x1, z2] = 10
mask[y1:y2, x2, z2] = 10
mask[y1, x1, z1:z2] = 10
mask[y1, x2, z1:z2] = 10
mask[y2, x1, z1:z2] = 10
mask[y2, x2, z1:z2] = 10
vol = nib.Nifti1Image(mask.astype(np.int32), affine)
if not os.path.exists("./results"):
os.makedirs("./results")
nib.save(vol, "./results/" + str(per_class_iou.mean()) + "_" + path_image[-17:])
print(path_image[-17:] + " detected done. iou = " + str(per_class_iou))
print("Test completed.")
# Print the iou results.
per_class_ious = np.array(per_class_ious)
print("per class iou mean:", np.mean(per_class_ious, axis=0))
print("std:", np.std(per_class_ious, axis=0))
print("Total ious mean:", per_class_ious.mean())
print("Total detect time:", detect_time)
############################################################
# Training
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train the Faster-Unet model to apply whole heart segmentation.')
parser.add_argument("command",
metavar="<command>",
help="'train' or 'test'")
parser.add_argument('--weights', required=True,
metavar="/path/to/weights.pth",
help="Path to weights .pth file")
parser.add_argument('--stage', required=True,
help="The training_stages now, 'beginning' or 'finetune'")
parser.add_argument('--logs', required=False,
default="./logs/",
metavar="/path/to/logs/",
help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--data', required=True,
default="../data/",
metavar="/path/to/data/",
help='Dataset directory (default=../data/)')
parser.add_argument('--limit', required=False,
default=5,
help='The number of images used for testing (default=4)')
parser.add_argument('--save', required=False,
default="true",
help='Whether to save the detected masks (default=False)')
parser.add_argument('--bbox', required=False,
default="false",
help='Whether to draw the bboxes (default=False)')
args = parser.parse_args()
assert args.stage in ['beginning', 'finetune']
print("Weights: ", args.weights)
print("Logs: ", args.logs)
# Configurations
if args.command == "train":
config = HeartConfig(args.stage.lower())
else:
class InferenceConfig(HeartConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
DETECTION_MIN_CONFIDENCE = 0.7
DETECTION_MAX_INSTANCES = 1
config = InferenceConfig(args.stage.lower())
config.display()
# Create model
if args.command == "train":
model = model.MaskRCNN(config=config, model_dir=args.logs, test_flag=False)
else:
model = model.MaskRCNN(config=config, model_dir=args.logs, test_flag=True)
if config.GPU_COUNT:
model = model.cuda()
if args.weights.lower() != "none":
# Select weights file to load
weights_path = args.weights
# Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path)
# Train or evaluate
if args.command == "train":
print("Training...")
train(model)
elif args.command == "test":
print("Testing...")
test(model, int(args.limit.lower()), args.save.lower(), args.bbox.lower())
else:
print("'{}' is not recognized. "
"Use 'train' or 'test'".format(args.command))