-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_reconstraction.py
313 lines (229 loc) · 9.64 KB
/
test_reconstraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# testing visilization
import argparse
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torchvision
from torchvision import models, datasets, transforms
from torch import nn
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import seaborn as sns
from FLAlgorithms.trainmodel.models import VGG16, MobileNetV2, VisionTransformer, ResNet18, MinimalDecoder
import os
import copy
import warnings
warnings.filterwarnings('ignore')
def pairwise_dist(A):
# Taken frmo https://stackoverflow.com/questions/37009647/compute-pairwise-distance-in-a-batch-without-replicating-tensor-in-tensorflow
#A = torch_print(A, [torch.reduce_sum(A)], message="A is")
r = torch.sum(A*A, 1)
r = torch.reshape(r, [-1, 1])
rr = r.repeat(1,A.shape[0])
rt = r.T.repeat(A.shape[0],1)
D = torch.maximum(rr - 2*torch.matmul(A, A.T) + rt, 1e-7*torch.ones(A.shape[0], A.shape[0]).to(A.device))
D = torch.sqrt(D)
return D
def dist_corr(X, F):
n = X.shape[0]
a = pairwise_dist(X)
b = pairwise_dist(F)
A = a - torch.mean(a,1).repeat(a.shape[1],1).T - torch.mean(a,0).repeat(a.shape[0],1) + torch.mean(a)
B = b - torch.mean(b,1).repeat(b.shape[1],1).T - torch.mean(b,0).repeat(b.shape[0],1) + torch.mean(b)
dCovXY = torch.sqrt(torch.sum(A*B) / (n ** 2)+ 1e-7)
dVarXX = torch.sqrt(torch.sum(A*A) / (n ** 2)+ 1e-7)
dVarYY = torch.sqrt(torch.sum(B*B) / (n ** 2)+ 1e-7)
dCorXY = dCovXY / (torch.sqrt(dVarXX + 1e-7) * torch.sqrt(dVarYY+ 1e-7) )
return dCorXY
class Corelation(nn.Module):
def __init__(self):
super(Corelation, self).__init__()
def forward(self, data, feaure):
n = data.shape[0]
loss = dist_corr(data.reshape(n,-1),feaure.reshape(n,-1))
return loss/n
class NormalizeInverse(transforms.Normalize):
"""
Undoes the normalization and returns the reconstructed images in the input domain.
"""
def __init__(self, mean, std):
mean = torch.as_tensor(mean)
std = torch.as_tensor(std)
std_inv = 1 / (std + 1e-7)
mean_inv = -mean * std_inv
super().__init__(mean=mean_inv, std=std_inv)
def __call__(self, tensor):
return super().__call__(tensor.clone())
class Normalize(transforms.Normalize):
"""
Undoes the normalization and returns the reconstructed images in the input domain.
"""
def __init__(self, mean, std):
mean = torch.as_tensor(mean)
std = torch.as_tensor(std)
super().__init__(mean=mean, std=std)
def __call__(self, tensor):
return super().__call__(tensor.clone())
def get_CIFAR10(root="./"):
input_size = 32
num_classes = 10
mean, std = [0.49139968, 0.48215827, 0.44653124],[0.24703233, 0.24348505, 0.26158768]
normalize = transforms.Normalize((mean), (std))
train_transform = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#normalize,
]
)
train_dataset = datasets.CIFAR10(
root + "data/CIFAR10", train=True, transform=train_transform, download=True
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
#normalize,
]
)
test_dataset = datasets.CIFAR10(
root + "data/CIFAR10", train=False, transform=test_transform, download=True
)
return input_size, num_classes, train_dataset, test_dataset
layer = 0
torch.manual_seed(0)
input_size, num_classes, train_dataset, test_dataset = get_CIFAR10()
mean, std = [0.49139968, 0.48215827, 0.44653124],[0.24703233, 0.24348505, 0.26158768]
NI = NormalizeInverse(mean, std) #inverse normalize
NM = Normalize(mean, std) #normalizing
def train(model, train_loader, optimizer, epoch, feature_extractor):
model.train()
total_loss = []
Loss = nn.MSELoss()
for data, target in tqdm(train_loader):
data_n = torch.zeros(data.shape)
for i in range(data.shape[0]):
data_n[i,:,:,:] = NM(data[i,:,:,:])
data = data.cuda()
feature = feature_extractor.get_feature(data_n.cuda(), idx=layer)
prediction = model(feature)
loss = Loss(data, prediction)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss.append(loss.item())
avg_loss = sum(total_loss) / len(total_loss)
print(f"Epoch: {epoch}:")
print(f"Train Set: Average Loss: {avg_loss:.2f}")
def test(model, test_loader, feature_extractor):
model.eval()
Loss = nn.MSELoss()
total_loss = []
for data, target in test_loader:
with torch.no_grad():
data_n = torch.zeros(data.shape)
for i in range(data.shape[0]):
data_n[i,:,:,:] = NM(data[i,:,:,:])
data = data.cuda()
feature = feature_extractor.get_feature(data_n.cuda(), idx=layer)
prediction = model(feature)
loss = Loss(data, prediction)
total_loss.append(loss.item())
avg_loss = sum(total_loss) / len(total_loss)
print(f"Testing Set: Average Loss: {avg_loss:.2f}")
return avg_loss
def train_decor(model, train_loader,lossname=None):
model.train()
global_model = copy.deepcopy(model)
global_model.eval()
tau = 1
KLLoss = nn.KLDivLoss(reduction='batchmean')
CELoss = nn.CrossEntropyLoss(reduction='mean')
CorLoss = Corelation()
Epoch = 30
losses1 = torch.zeros(Epoch)
losses2 = torch.zeros(Epoch)
losses3 = torch.zeros(Epoch)
N_Batch = len(train_loader)
for epoch in range(Epoch):
for batch_X, batch_Y in train_loader:
batch_X, batch_Y = batch_X.cuda(), batch_Y.cuda()
batch_F = model.get_feature(batch_X, idx=0)
## local data CE
logit = model(batch_X)
loss1 = CELoss(logit,batch_Y)
losses1[epoch] += loss1.item()
## local data distilling
logit_gb = global_model(batch_X)
pro_gb = F.softmax(logit_gb / tau, dim=1) ## y
pro_lc = F.log_softmax(logit / tau, dim=1) ## x
loss2 = (tau ** 2) * KLLoss(pro_lc,pro_gb)
losses2[epoch] += loss2.item()
##local feature decorrelation
loss3 = CorLoss(batch_X, batch_F)*20
losses3[epoch] += loss3.item()
if lossname == 'CE_KL':
loss_all = loss1 + loss2
elif lossname == 'COR_KL':
loss_all = loss2 +loss3
elif lossname == 'CE_COR_KL':
loss_all = loss1 + loss2 +loss3
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
optimizer.zero_grad()
loss_all.backward() #retain_graph=True
optimizer.step()
print('training:',lossname, 'CEloss:', losses1.mean()/N_Batch, 'KLloss:', losses2.mean()/N_Batch, 'Decorrelation loss:', losses3.mean()/N_Batch)
print('decorrelation:', losses3/N_Batch)
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=20, help="number of epochs to train (default: 50)")
parser.add_argument("--lr", type=float, default=0.001, help="learning rate (default: 0.05)")
parser.add_argument("--seed", type=int, default=1, help="random seed (default: 1)")
args = parser.parse_args()
########save feature
feature_extractor = MobileNetV2(10).cuda()
checkpoint_path = os.path.join('FLea/models/saved','c0.4_server_FLea_test_MOBNET_Cifar10_loss_MCE_DeC_KL_epoch_10_500_client_100_split_quantity_3.0.pt')
feature_extractor = torch.load(checkpoint_path).cuda()
print('Load model checkpoint from name succuessfully!')
feature_extractor.eval()
## reconstruction model (use feature from normalised data)
model = MinimalDecoder(input_nc=16, output_nc=3, input_dim=32, output_dim=32) #0-16, 1=24
print(model)
model = model.cuda()
kwargs = {"num_workers": 2, "pin_memory": True}
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=3000, shuffle=False, **kwargs)
milestones = [25, 50, 80]
Loss = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
for epoch in range(args.epochs):
train(model, train_loader, optimizer, epoch, feature_extractor)
test(model, test_loader, feature_extractor)
scheduler.step()
## visualise reconstruction
plt.figure(figsize=(20, 10))
data, label = test_dataset[16]
data[0,2:7,2:7] = 1
ax = plt.subplot(1,2, 1)
plt.imshow(transforms.ToPILImage()(data))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
data = NM(data)
data = data[None, :]
feature = feature_extractor.get_feature(data.cuda(), idx=layer)
prediction = model(feature)
Loss = nn.MSELoss()
print(Loss(data.cuda(), prediction))
data = data.cpu().detach()
prediction = prediction.cpu().detach()
ax = plt.subplot(1,2, 2)
plt.imshow(transforms.ToPILImage()(prediction[0]))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.savefig('recons_example.png')
if __name__ == "__main__":
main()