-
Notifications
You must be signed in to change notification settings - Fork 0
/
maze.py
286 lines (236 loc) · 9.4 KB
/
maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import heapq
from cell import Cell
import time
import random
class Maze:
def __init__(
self,
x1,
y1,
num_rows,
num_cols,
cell_size_x,
cell_size_y,
win=None,
seed=None
):
self._cells = []
self._x1 = x1
self._y1 = y1
self._num_rows = num_rows
self._num_cols = num_cols
self._cell_size_x = cell_size_x
self._cell_size_y = cell_size_y
self._win = win
if seed:
random.seed(seed)
self._create_cells()
self._break_entrance_and_exit()
self._break_walls_r(0, 0)
self._reset_cells_visited()
def _create_cells(self):
for i in range(self._num_cols):
col_cells = []
for j in range(self._num_rows):
col_cells.append(Cell(self._win))
self._cells.append(col_cells)
for i in range(self._num_cols):
for j in range(self._num_rows):
self._draw_cell(i, j)
def _draw_cell(self, i, j):
if self._win is None:
return
x1 = self._x1 + i * self._cell_size_x
y1 = self._y1 + j * self._cell_size_y
x2 = x1 + self._cell_size_x
y2 = y1 + self._cell_size_y
self._cells[i][j].draw(x1, y1, x2, y2)
self._animate()
def _animate(self):
if self._win is None:
return
self._win.redraw()
time.sleep(0.05)
def _break_entrance_and_exit(self):
self._cells[0][0].has_top_wall = False
self._draw_cell(0, 0)
self._cells[-1][-1].has_bottom_wall = False
self._draw_cell(self._num_cols - 1, self._num_rows - 1)
def _break_walls_r(self, i, j):
self._cells[i][j].visited = True
while True:
next_index_list = []
if i > 0 and not self._cells[i - 1][j].visited:
next_index_list.append((i - 1, j))
if i < self._num_cols - 1 and not self._cells[i + 1][j].visited:
next_index_list.append((i + 1, j))
if j > 0 and not self._cells[i][j - 1].visited:
next_index_list.append((i, j - 1))
if j < self._num_rows - 1 and not self._cells[i][j + 1].visited:
next_index_list.append((i, j + 1))
if len(next_index_list) == 0:
self._draw_cell(i, j)
return
direction_index = random.randrange(len(next_index_list))
next_index = next_index_list[direction_index]
if next_index[0] == i + 1:
self._cells[i][j].has_right_wall = False
self._cells[i + 1][j].has_left_wall = False
if next_index[0] == i - 1:
self._cells[i][j].has_left_wall = False
self._cells[i - 1][j].has_right_wall = True
if next_index[1] == j + 1:
self._cells[i][j].has_bottom_wall = False
self._cells[i][j + 1].has_top_wall = False
if next_index[1] == j - 1:
self._cells[i][j].has_top_wall = False
self._cells[i][j - 1].has_bottom_wall = False
self._break_walls_r(next_index[0], next_index[1])
def _reset_cells_visited(self):
for col in self._cells:
for cell in col:
cell.visited = False
def _solve_dfs(self, i, j):
self._animate()
self._cells[i][j].visited = True
if i == self._num_cols - 1 and j == self._num_rows - 1:
return True
if (
i > 0
and not self._cells[i][j].has_left_wall
and not self._cells[i - 1][j].visited
):
self._cells[i][j].draw_move(self._cells[i - 1][j])
if self._solve_dfs(i - 1, j):
return True
else:
self._cells[i][j].draw_move(self._cells[i - 1][j], True)
if (
i < self._num_cols - 1
and not self._cells[i][j].has_right_wall
and not self._cells[i + 1][j].visited
):
self._cells[i][j].draw_move(self._cells[i + 1][j])
if self._solve_dfs(i + 1, j):
return True
else:
self._cells[i][j].draw_move(self._cells[i + 1][j], True)
if (
j > 0
and not self._cells[i][j].has_top_wall
and not self._cells[i][j - 1].visited
):
self._cells[i][j].draw_move(self._cells[i][j - 1])
if self._solve_dfs(i, j - 1):
return True
else:
self._cells[i][j].draw_move(self._cells[i][j - 1], True)
if (
j < self._num_rows - 1
and not self._cells[i][j].has_bottom_wall
and not self._cells[i][j + 1].visited
):
self._cells[i][j].draw_move(self._cells[i][j + 1])
if self._solve_dfs(i, j + 1):
return True
else:
self._cells[i][j].draw_move(self._cells[i][j + 1], True)
return False
def _reconstruct_path(self, came_from, start, goal):
current = goal
while current != start:
self._animate()
self._cells[current[0]][current[1]].draw_move(self._cells[came_from[current][0]][came_from[current][1]])
current = came_from[current]
return True
def _solve_bfs(self, i, j):
goal = (self._num_cols - 1, self._num_rows - 1)
start = (i, j)
cells_to_visit = [start]
came_from = {start: None}
while cells_to_visit:
i, j = cells_to_visit.pop(0)
if start == goal:
return self._reconstruct_path(came_from, start, goal)
self._animate()
self._cells[i][j].visited = True
if (
i > 0
and not self._cells[i][j].has_left_wall
and not self._cells[i - 1][j].visited
):
cells_to_visit.append((i - 1, j))
came_from[(i - 1, j)] = (i, j)
self._cells[i][j].draw_move(self._cells[i - 1][j],True)
if (
i < self._num_cols - 1
and not self._cells[i][j].has_right_wall
and not self._cells[i + 1][j].visited
):
cells_to_visit.append((i + 1, j))
came_from[(i + 1, j)] = (i, j)
self._cells[i][j].draw_move(self._cells[i + 1][j], True)
if (
j > 0
and not self._cells[i][j].has_top_wall
and not self._cells[i][j - 1].visited
):
cells_to_visit.append((i, j - 1))
came_from[(i, j - 1)] = (i, j)
self._cells[i][j].draw_move(self._cells[i][j - 1], True)
if (
j < self._num_rows - 1
and not self._cells[i][j].has_bottom_wall
and not self._cells[i][j + 1].visited
):
cells_to_visit.append((i, j + 1))
came_from[(i, j + 1)] = (i, j)
self._cells[i][j].draw_move(self._cells[i][j + 1], True)
return False
def _a_star(self, i, j):
def h(current, goal):
return abs(current[0] - goal[0]) + abs(current[1] - goal[1])
goal = (self._num_cols - 1, self._num_rows - 1)
start = (i, j)
openSet = []
heapq.heappush(openSet, (h(start, goal), start))
came_from = {}
gScore = {start: 0}
fScore = {start: h(start, goal)}
while openSet:
self._animate()
_, current = heapq.heappop(openSet)
if current == goal:
return self._reconstruct_path(came_from, start, goal)
current_i, current_j = current
self._cells[current_i][current_j].visited = True
neighbors = [
(current_i - 1, current_j),
(current_i + 1, current_j),
(current_i, current_j - 1),
(current_i, current_j + 1)
]
for neighbor in neighbors:
ni, nj = neighbor
if 0 <= ni < self._num_cols and 0 <= nj < self._num_rows:
if self._cells[current_i][current_j].has_left_wall and ni == current_i - 1:
continue
if self._cells[current_i][current_j].has_right_wall and ni == current_i + 1:
continue
if self._cells[current_i][current_j].has_top_wall and nj == current_j - 1:
continue
if self._cells[current_i][current_j].has_bottom_wall and nj == current_j + 1:
continue
tentative_gScore = gScore[current] + 1
if tentative_gScore < gScore.get(neighbor, float('inf')):
came_from[neighbor] = current
gScore[neighbor] = tentative_gScore
fScore[neighbor] = tentative_gScore + h(neighbor, goal)
if neighbor not in [item[1] for item in openSet]:
heapq.heappush(openSet, (fScore[neighbor], neighbor))
self._cells[current_i][current_j].draw_move(self._cells[ni][nj], True)
return False
def solve(self):
# return self._solve_dfs(0, 0)
# return self._solve_bfs(0, 0)
return self._a_star(0, 0)