-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbackbones.py
333 lines (268 loc) · 12.6 KB
/
backbones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import torch
from torch import nn
import math
from typing import Callable
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation,
groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class IBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
groups=1, base_width=64, dilation=1):
super(IBasicBlock, self).__init__()
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, )
self.conv1 = conv3x3(inplanes, planes)
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, )
self.prelu = nn.PReLU(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, )
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
class IResNet(nn.Module):
fc_scale = 7 * 7
def __init__(self,
block, layers, dropout=0, num_features=512, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
super(IResNet, self).__init__()
self.extra_gflops = 0.0
self.fp16 = fp16
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
self.prelu = nn.PReLU(self.inplanes)
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, )
self.dropout = nn.Dropout(p=dropout, inplace=True)
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
nn.init.constant_(self.features.weight, 1.0)
self.features.weight.requires_grad = False
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, 0, 0.1)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, IBasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
)
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation))
return nn.Sequential(*layers)
def forward(self, x):
with torch.cuda.amp.autocast(self.fp16):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn2(x)
x = torch.flatten(x, 1)
x = self.dropout(x)
x = self.fc(x.float() if self.fp16 else x)
x = self.features(x)
return x
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
model = IResNet(block, layers, **kwargs)
if pretrained:
raise ValueError()
return model
def iresnet18(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained,
progress, **kwargs)
def iresnet34(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained,
progress, **kwargs)
def iresnet50(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained,
progress, **kwargs)
def iresnet100(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained,
progress, **kwargs)
def iresnet200(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained,
progress, **kwargs)
def get_model(name, **kwargs):
# resnet
if name == "r18":
return iresnet18(False, **kwargs)
elif name == "r34":
return iresnet34(False, **kwargs)
elif name == "r50":
return iresnet50(False, **kwargs)
elif name == "r100":
return iresnet100(False, **kwargs)
elif name == "r200":
return iresnet200(False, **kwargs)
class my_CE_0(torch.nn.Module):
def __init__(self, loss_function: Callable, embedding_size: int, num_classes: int):
super(my_CE_0, self).__init__()
self.cross_entropy = torch.nn.CrossEntropyLoss()
self.embedding_size = embedding_size
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (num_classes, embedding_size)))
# margin_loss
if isinstance(loss_function, Callable):
self.loss_function = loss_function
else:
raise
def forward(self, embeddings: torch.Tensor, labels: torch.Tensor):
weight = self.weight
with torch.cuda.amp.autocast(False):
logits = nn.functional.linear(embeddings, weight)
logits = self.loss_function(logits, labels)
loss = self.cross_entropy(logits, labels)
return loss
class my_CE_1(torch.nn.Module):
# for LSoftmax and ASoftmax
def __init__(self, loss_function: Callable, embedding_size: int, num_classes: int):
super(my_CE_1, self).__init__()
self.cross_entropy = torch.nn.CrossEntropyLoss()
self.embedding_size = embedding_size
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (num_classes, embedding_size)))
# margin_loss
if isinstance(loss_function, Callable):
self.loss_function = loss_function
else:
raise
def forward(self, embeddings: torch.Tensor, labels: torch.Tensor):
# Embedding : m , d
weight = self.weight
with torch.cuda.amp.autocast(False):
logits = nn.functional.linear(embeddings, weight) # [m, d] [c, d]
norm_embeddings = nn.functional.normalize(embeddings)
norm_weight_activated = nn.functional.normalize(weight)
logits = self.loss_function(logits, labels, norm_embeddings, norm_weight_activated)
loss = self.cross_entropy(logits, labels)
return loss
class my_CE_2(torch.nn.Module):
# 权重和特征都做归一化
def __init__(self, loss_function: Callable, embedding_size: int, num_classes: int):
super(my_CE_2, self).__init__()
self.cross_entropy = torch.nn.CrossEntropyLoss()
self.embedding_size = embedding_size
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (num_classes, embedding_size)))
# margin_loss
if isinstance(loss_function, Callable):
self.loss_function = loss_function
else:
raise
def forward(self, embeddings: torch.Tensor, labels: torch.Tensor):
weight = self.weight
with torch.cuda.amp.autocast(False):
norm_embeddings = nn.functional.normalize(embeddings)
norm_weight_activated = nn.functional.normalize(weight)
logits = nn.functional.linear(norm_embeddings, norm_weight_activated)
logits = self.loss_function(logits, labels)
loss = self.cross_entropy(logits, labels)
return loss
class MagLinear(torch.nn.Module):
def __init__(self, loss_function: Callable, embedding_size: int, num_classes: int, parameters):
super(MagLinear, self).__init__()
self.embedding_size = embedding_size
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (num_classes, embedding_size))) # c, d
self.s = parameters[0]
self.l_m = parameters[1]
self.u_m = parameters[2]
self.l_a = parameters[3]
self.u_a = parameters[4]
self.lamb = parameters[5]
if isinstance(loss_function, Callable):
self.loss_function = loss_function
else:
raise
def _margin(self, x):
margin = (self.u_m - self.l_m) / (self.u_a - self.l_a) * (x - self.l_a) + self.l_m
return margin
def forward(self, embeddings: torch.Tensor, labels: torch.Tensor):
x_p = torch.norm(embeddings, dim=1, keepdim=True).clamp(self.l_a, self.u_a) # m, 1
ada_m = self._margin(x_p)
cos_m, sin_m = torch.cos(ada_m), torch.sin(ada_m)
weight_norm = nn.functional.normalize(self.weight) # c, 1
x_norm = nn.functional.normalize(embeddings)
costheta = nn.functional.linear(x_norm, weight_norm)
costheta = costheta.clamp(-1, 1)
sintheta = torch.sqrt(1.0 - torch.pow(costheta, 2))
costheta_m = costheta * cos_m - sintheta * sin_m
mm = torch.sin(math.pi - ada_m) * ada_m
threshold = torch.cos(math.pi - ada_m)
costheta_m = torch.where(costheta > threshold, costheta_m, costheta - mm)
costheta = costheta * self.s
costheta_m = costheta_m * self.s
loss = self.loss_function(costheta, costheta_m, labels, x_p)
return loss
class DynArcLinear(torch.nn.Module):
# 权重和特征都做归一化
def __init__(self, loss_function: Callable, embedding_size: int, num_classes: int):
super(DynArcLinear, self).__init__()
self.cross_entropy = torch.nn.CrossEntropyLoss()
self.embedding_size = embedding_size
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (num_classes, embedding_size)))
# margin_loss
if isinstance(loss_function, Callable):
self.loss_function = loss_function
else:
raise
def forward(self, embeddings: torch.Tensor, labels: torch.Tensor):
weight = self.weight
with torch.cuda.amp.autocast(False):
norm_embeddings = nn.functional.normalize(embeddings)
norm_weight_activated = nn.functional.normalize(weight)
logits = nn.functional.linear(norm_embeddings, norm_weight_activated)
logits = self.loss_function(logits, labels, norm_weight_activated)
loss = self.cross_entropy(logits, labels)
return loss