-
Notifications
You must be signed in to change notification settings - Fork 66
/
DCEC.py
265 lines (226 loc) · 10.9 KB
/
DCEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from time import time
import numpy as np
import keras.backend as K
from keras.engine.topology import Layer, InputSpec
from keras.models import Model
from keras.utils.vis_utils import plot_model
from sklearn.cluster import KMeans
import metrics
from ConvAE import CAE
class ClusteringLayer(Layer):
"""
Clustering layer converts input sample (feature) to soft label, i.e. a vector that represents the probability of the
sample belonging to each cluster. The probability is calculated with student's t-distribution.
# Example
```
model.add(ClusteringLayer(n_clusters=10))
```
# Arguments
n_clusters: number of clusters.
weights: list of Numpy array with shape `(n_clusters, n_features)` witch represents the initial cluster centers.
alpha: parameter in Student's t-distribution. Default to 1.0.
# Input shape
2D tensor with shape: `(n_samples, n_features)`.
# Output shape
2D tensor with shape: `(n_samples, n_clusters)`.
"""
def __init__(self, n_clusters, weights=None, alpha=1.0, **kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(ClusteringLayer, self).__init__(**kwargs)
self.n_clusters = n_clusters
self.alpha = alpha
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
self.clusters = self.add_weight((self.n_clusters, input_dim), initializer='glorot_uniform', name='clusters')
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def call(self, inputs, **kwargs):
""" student t-distribution, as same as used in t-SNE algorithm.
q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it.
Arguments:
inputs: the variable containing data, shape=(n_samples, n_features)
Return:
q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters)
"""
q = 1.0 / (1.0 + (K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2) / self.alpha))
q **= (self.alpha + 1.0) / 2.0
q = K.transpose(K.transpose(q) / K.sum(q, axis=1))
return q
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
return input_shape[0], self.n_clusters
def get_config(self):
config = {'n_clusters': self.n_clusters}
base_config = super(ClusteringLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class DCEC(object):
def __init__(self,
input_shape,
filters=[32, 64, 128, 10],
n_clusters=10,
alpha=1.0):
super(DCEC, self).__init__()
self.n_clusters = n_clusters
self.input_shape = input_shape
self.alpha = alpha
self.pretrained = False
self.y_pred = []
self.cae = CAE(input_shape, filters)
hidden = self.cae.get_layer(name='embedding').output
self.encoder = Model(inputs=self.cae.input, outputs=hidden)
# Define DCEC model
clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(hidden)
self.model = Model(inputs=self.cae.input,
outputs=[clustering_layer, self.cae.output])
def pretrain(self, x, batch_size=256, epochs=200, optimizer='adam', save_dir='results/temp'):
print('...Pretraining...')
self.cae.compile(optimizer=optimizer, loss='mse')
from keras.callbacks import CSVLogger
csv_logger = CSVLogger(args.save_dir + '/pretrain_log.csv')
# begin training
t0 = time()
self.cae.fit(x, x, batch_size=batch_size, epochs=epochs, callbacks=[csv_logger])
print('Pretraining time: ', time() - t0)
self.cae.save(save_dir + '/pretrain_cae_model.h5')
print('Pretrained weights are saved to %s/pretrain_cae_model.h5' % save_dir)
self.pretrained = True
def load_weights(self, weights_path):
self.model.load_weights(weights_path)
def extract_feature(self, x): # extract features from before clustering layer
return self.encoder.predict(x)
def predict(self, x):
q, _ = self.model.predict(x, verbose=0)
return q.argmax(1)
@staticmethod
def target_distribution(q):
weight = q ** 2 / q.sum(0)
return (weight.T / weight.sum(1)).T
def compile(self, loss=['kld', 'mse'], loss_weights=[1, 1], optimizer='adam'):
self.model.compile(loss=loss, loss_weights=loss_weights, optimizer=optimizer)
def fit(self, x, y=None, batch_size=256, maxiter=2e4, tol=1e-3,
update_interval=140, cae_weights=None, save_dir='./results/temp'):
print('Update interval', update_interval)
save_interval = x.shape[0] / batch_size * 5
print('Save interval', save_interval)
# Step 1: pretrain if necessary
t0 = time()
if not self.pretrained and cae_weights is None:
print('...pretraining CAE using default hyper-parameters:')
print(' optimizer=\'adam\'; epochs=200')
self.pretrain(x, batch_size, save_dir=save_dir)
self.pretrained = True
elif cae_weights is not None:
self.cae.load_weights(cae_weights)
print('cae_weights is loaded successfully.')
# Step 2: initialize cluster centers using k-means
t1 = time()
print('Initializing cluster centers with k-means.')
kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
self.y_pred = kmeans.fit_predict(self.encoder.predict(x))
y_pred_last = np.copy(self.y_pred)
self.model.get_layer(name='clustering').set_weights([kmeans.cluster_centers_])
# Step 3: deep clustering
# logging file
import csv, os
if not os.path.exists(save_dir):
os.makedirs(save_dir)
logfile = open(save_dir + '/dcec_log.csv', 'w')
logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'acc', 'nmi', 'ari', 'L', 'Lc', 'Lr'])
logwriter.writeheader()
t2 = time()
loss = [0, 0, 0]
index = 0
for ite in range(int(maxiter)):
if ite % update_interval == 0:
q, _ = self.model.predict(x, verbose=0)
p = self.target_distribution(q) # update the auxiliary target distribution p
# evaluate the clustering performance
self.y_pred = q.argmax(1)
if y is not None:
acc = np.round(metrics.acc(y, self.y_pred), 5)
nmi = np.round(metrics.nmi(y, self.y_pred), 5)
ari = np.round(metrics.ari(y, self.y_pred), 5)
loss = np.round(loss, 5)
logdict = dict(iter=ite, acc=acc, nmi=nmi, ari=ari, L=loss[0], Lc=loss[1], Lr=loss[2])
logwriter.writerow(logdict)
print('Iter', ite, ': Acc', acc, ', nmi', nmi, ', ari', ari, '; loss=', loss)
# check stop criterion
delta_label = np.sum(self.y_pred != y_pred_last).astype(np.float32) / self.y_pred.shape[0]
y_pred_last = np.copy(self.y_pred)
if ite > 0 and delta_label < tol:
print('delta_label ', delta_label, '< tol ', tol)
print('Reached tolerance threshold. Stopping training.')
logfile.close()
break
# train on batch
if (index + 1) * batch_size > x.shape[0]:
loss = self.model.train_on_batch(x=x[index * batch_size::],
y=[p[index * batch_size::], x[index * batch_size::]])
index = 0
else:
loss = self.model.train_on_batch(x=x[index * batch_size:(index + 1) * batch_size],
y=[p[index * batch_size:(index + 1) * batch_size],
x[index * batch_size:(index + 1) * batch_size]])
index += 1
# save intermediate model
if ite % save_interval == 0:
# save DCEC model checkpoints
print('saving model to:', save_dir + '/dcec_model_' + str(ite) + '.h5')
self.model.save_weights(save_dir + '/dcec_model_' + str(ite) + '.h5')
ite += 1
# save the trained model
logfile.close()
print('saving model to:', save_dir + '/dcec_model_final.h5')
self.model.save_weights(save_dir + '/dcec_model_final.h5')
t3 = time()
print('Pretrain time: ', t1 - t0)
print('Clustering time:', t3 - t1)
print('Total time: ', t3 - t0)
if __name__ == "__main__":
# setting the hyper parameters
import argparse
parser = argparse.ArgumentParser(description='train')
parser.add_argument('dataset', default='mnist', choices=['mnist', 'usps', 'mnist-test'])
parser.add_argument('--n_clusters', default=10, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--maxiter', default=2e4, type=int)
parser.add_argument('--gamma', default=0.1, type=float,
help='coefficient of clustering loss')
parser.add_argument('--update_interval', default=140, type=int)
parser.add_argument('--tol', default=0.001, type=float)
parser.add_argument('--cae_weights', default=None, help='This argument must be given')
parser.add_argument('--save_dir', default='results/temp')
args = parser.parse_args()
print(args)
import os
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# load dataset
from datasets import load_mnist, load_usps
if args.dataset == 'mnist':
x, y = load_mnist()
elif args.dataset == 'usps':
x, y = load_usps('data/usps')
elif args.dataset == 'mnist-test':
x, y = load_mnist()
x, y = x[60000:], y[60000:]
# prepare the DCEC model
dcec = DCEC(input_shape=x.shape[1:], filters=[32, 64, 128, 10], n_clusters=args.n_clusters)
plot_model(dcec.model, to_file=args.save_dir + '/dcec_model.png', show_shapes=True)
dcec.model.summary()
# begin clustering.
optimizer = 'adam'
dcec.compile(loss=['kld', 'mse'], loss_weights=[args.gamma, 1], optimizer=optimizer)
dcec.fit(x, y=y, tol=args.tol, maxiter=args.maxiter,
update_interval=args.update_interval,
save_dir=args.save_dir,
cae_weights=args.cae_weights)
y_pred = dcec.y_pred
print('acc = %.4f, nmi = %.4f, ari = %.4f' % (metrics.acc(y, y_pred), metrics.nmi(y, y_pred), metrics.ari(y, y_pred)))