-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
206 lines (166 loc) · 5.99 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import sys
import torch
from os.path import join as pjoin
from py_utils import ensure_dirs
import shutil
BASEPATH = os.path.dirname(__file__)
sys.path.insert(0, BASEPATH)
class Config:
for_try = False # set to True only if you want to quickly check if all parts (latent space visualization, result output, etc.) function correctly
# Save & Visualization
name = 'pretrained' # name of the experiment, for training from scratch please use a different name
cuda_id = 1
# hyyyper params
use_rotloss = True
use_newdecoder = True
# data paths
data_dir = pjoin(BASEPATH, 'data')
expr_dir = BASEPATH
data_filename = "xia.npz" #
data_path = pjoin(data_dir, data_filename)
extra_data_dir = pjoin(data_dir, data_filename.split('.')[-2].split('/')[-1] + "_norms")
# model paths
main_dir = None
model_dir = None
tb_dir = None
info_dir = None
output_dir = None
vis_freq = 100
log_freq = 100
save_freq = 25000
mt_save_iter = 50000 # How often do you want to save output images during training
mt_display_iter = 5000 # How often do you want to display output images during training
mt_batch_n = 1 # number of batches to save in training
# optimization options
max_iter = 300000 # maximum number of training iterations
weight_decay = 0.0001 # weight decay
lr_gen = 0.0001 # learning rate for the generator
lr_dis = 0.0001 # learning rate for the discriminator
weight_init = 'kaiming' # initialization [gaussian/kaiming/xavier/orthogonal]
lr_policy = None
# Training
batch_size = 16
# Testing
test_batch_n = 56 # number of test clips
if for_try:
vis_freq = 1
log_freq = 1
save_freq = 5
# logger options
mt_save_iter = 2 # How often do you want to save output images during training
mt_display_iter = 3 # How often do you want to display output images during training
mt_batch_n = 1 # number of batches to save in training
max_iter = 10 # maximum number of training iterations
batch_size = 16
# dataset
dataset_norm_config = { # specify the prefix of mean/std
"train":
{"content": None, "style3d": None, "style2d": None}, # will be named automatically as "train_content", etc.
"test":
{"content": "train", "style3d": "train", "style2d": "train"},
"trainfull":
{"content": "train", "style3d": "train", "style2d": "train"}
}
# input: T * 64
rot_channels = 128 # added one more y-axis rotation
pos3d_channels = 64 # changed to be the same as rfree
proj_channels = 42
num_channel = rot_channels
num_style_joints = 21
style_channel_2d = proj_channels
style_channel_3d = pos3d_channels
"""
encoder for class
[down_n] stride=[enc_cl_stride], dim=[enc_cl_channels] convs,
followed by [enc_cl_global_pool]
"""
enc_cl_down_n = 2 # 64 -> 32 -> 16 -> 8 -> 4
enc_cl_channels = [0, 96, 144]
enc_cl_kernel_size = 8
enc_cl_stride = 2
"""
encoder for content
[down_n] stride=[enc_co_stride], dim=[enc_co_channels] convs (with IN)
followed by [enc_co_resblks] resblks with IN
"""
enc_co_down_n = 1 # 64 -> 32 -> 16 -> 8
enc_co_channels = [num_channel, 144]
enc_co_kernel_size = 8
enc_co_stride = 2
enc_co_resblks = 1
"""
mlp
map from class output [enc_cl_channels[-1] * 1]
to AdaIN params (dim calculated at runtime)
"""
mlp_dims = [enc_cl_channels[-1], 192, 256]
#change here
content_mlp_dim = 6
style_mlp_dim = 8
out_dim = 256
"""
embedding parameters
"""
emb_num = 6 #
emb_dim = 6 #
"""
decoder
[dec_resblks] resblks with AdaIN
[dec_up_n] Upsampling followed by stride=[dec_stride] convs
"""
dec_bt_channel = 144
dec_resblks = enc_co_resblks
dec_channels = enc_co_channels.copy()
dec_channels.reverse()
dec_channels[-1] = 31 * 4 # Let it output rotations only
dec_up_n = enc_co_down_n
dec_kernel_size = 8
dec_stride = 1
"""
discriminator
1) conv w/o acti or norm, keeps dims
2) [disc_down_n] *
(ActiFirstResBlk(channel[i], channel[i])
+ ActiFirstResBlk(channel[i], channel[i + 1])
+ AvgPool(pool_size, pool_stride))
3) 2 ActiFirstResBlks that keep dims(channel[-1])
4) conv, [channel[-1] -> num_classes]
"""
disc_channels = [pos3d_channels, 96, 144]
disc_down_n = 2 # 64 -> 32 -> 16 -> 8 -> 4
disc_kernel_size = 6
disc_stride = 1
disc_pool_size = 3
disc_pool_stride = 2
num_classes = 8 # set to 16 for training on bfa data
gan_w = 1
rec_w = 1
rrec_w = 1
feat_w = 0.5
qt_w = 0.1
joint_w = 0.3
triplet_w = 0.3
triplet_margin = 5
twist_w = 1
twist_alpha = 100
trans_weight = 0.5
device = None
gpus = 1
def initialize(self, args=None, save=True):
if hasattr(args, 'name') and args.name is not None:
print("args.name= ", args.name)
self.name = args.name
if hasattr(args, 'batch_size') and args.name is not None:
self.batch_size = args.batch_size
self.main_dir = os.path.join(self.expr_dir, self.name)
self.model_dir = os.path.join(self.main_dir, "pth")
self.tb_dir = os.path.join(self.main_dir, "log")
self.info_dir = os.path.join(self.main_dir, "info")
self.output_dir = os.path.join(self.main_dir, "output")
ensure_dirs([self.main_dir, self.model_dir, self.tb_dir, self.info_dir, self.output_dir, self.extra_data_dir])
self.device = torch.device("cuda:%d" % self.cuda_id if torch.cuda.is_available() else "cpu")
if save:
self.config_name = args.config
cfg_file = "%s.py" % self.config_name
shutil.copy(pjoin(BASEPATH, cfg_file), os.path.join(self.info_dir, cfg_file))