-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo_transfer_sra.py
181 lines (128 loc) · 5.47 KB
/
demo_transfer_sra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import logging
import os
import time
from builtins import ValueError
from multiprocessing.sharedctypes import Value
from pathlib import Path
import datetime
import pickle
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import ConcatDataset, DataLoader
# from torchsummary import summary
from tqdm import tqdm
from mld.config import parse_args
# from mld.datasets.get_dataset import get_datasets
from mld.data.get_data import get_datasets
from mld.data.sampling import subsample, upsample
from mld.models.get_model import get_model
from mld.utils.logger import create_logger
from visual import visual_pos
def main():
"""
get input text
ToDo skip if user input text in command
current tasks:
1 text 2 mtion
2 motion transfer
3 random sampling
4 reconstruction
ToDo
1 use one funtion for all expoert
2 fitting smpl and export fbx in this file
3
"""
# parse options
cfg = parse_args(phase="demo")
cfg.FOLDER = cfg.TEST.FOLDER
cfg.Name = "demo--" + cfg.NAME
logger = create_logger(cfg, phase="demo")
style_path = cfg.DEMO.style_motion_dir
content_path = cfg.DEMO.content_motion_dir
eval_name = "style"
eval_id = 0
# chekpoints_str = cfg.TEST.CHECKPOINTS.split("/")[-1].split(".")[0].split("=")[1]
save_path = Path(os.path.join(cfg.FOLDER, str(cfg.model.model_type), str(cfg.NAME)))
save_path.mkdir(parents=True, exist_ok=True)
save_path = os.path.join(save_path, eval_name+'-'+str(eval_id)+'_expname_'+str(cfg.NAME)+"_scale_"+str(cfg.DEMO.scale).replace('.','-') + '.pkl')
# cuda options
if cfg.ACCELERATOR == "gpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(x) for x in cfg.DEVICE)
device = torch.device("cuda:0")
# load dataset to extract nfeats dim of model
dataset = get_datasets(cfg, logger=logger, phase="test")[0]
# create mld model
model = get_model(cfg, dataset)
# loading checkpoints
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
state_dict = torch.load(cfg.TEST.CHECKPOINTS,
map_location="cpu")["state_dict"]
model.load_state_dict(state_dict, strict=True)
logger.info("model {} loaded".format(cfg.model.model_type))
model.sample_mean = cfg.TEST.MEAN
model.fact = cfg.TEST.FACT
model.to(device)
model.eval()
# MOTION = cfg.DEMO.MOTION
scale = cfg.DEMO.scale
sum1 = 0
save_all = {}
save_all["joints"]=[]
save_all["id"]=[]
save_all["label_content"]=[]
save_all["label_style"]=[]
for content in os.listdir(content_path):
content_file_name = content.split('.')[0]
content_file_path = os.path.join(content_path, content)
content_motion = np.load(content_file_path)
content_motion = np.array([content_motion])
# content_motion = np.expand_dims(content_motion,0)
content_motion = torch.tensor(content_motion).to(device)
length = content_motion.shape[1]
lengths = [int(length)]
for style in os.listdir(style_path):
print('sum={}, total 900'.format(sum1))
sum1 = sum1 + 1
style_file_name = style.split('.')[0]
style_file_path = os.path.join(style_path, style)
style_motion = np.load(style_file_path)
style_motion = np.array([style_motion])
style_motion = torch.tensor(style_motion).to(device)
with torch.no_grad():
rep_lst = []
rep_ref_lst = []
texts_lst = []
# prepare batch data
batch = {"length": lengths, "style_motion": style_motion, "tag_scale": scale, "content_motion": content_motion}
joints = model(batch)
# npypath = str(output_dir /
# f"{content_file_name}_{style_file_name}_{str(lengths[0])}_scale_{str(scale).replace('.','-')}.npy")
# np.save(npypath, joints[0].detach().cpu().numpy())
idid = "content"+content_file_name+"_"+"style"+style_file_name+"_scale_"+str(scale).replace('.','-')
save_all["joints"].append(joints[0].detach().cpu().numpy())
save_all["id"].append(idid)
save_all["label_content"].append(content_file_name.split("-")[-1])
save_all["label_style"].append(style_file_name.split("-")[-1])
# a = [1, 2, 3]
with open(save_path, 'wb') as f:
pickle.dump(save_all, f)
# if cfg.DEMO.RENDER:
# # plot with lines
# # from mld.data.humanml.utils.plot_script import plot_3d_motion
# # fig_path = Path(str(npypath).replace(".npy",".mp4"))
# # plot_3d_motion(fig_path, joints, title=text, fps=cfg.DEMO.FRAME_RATE)
# # single render
# # from mld.utils.demo_utils import render
# # figpath = render(npypath, cfg.DATASET.JOINT_TYPE,
# # cfg_path="./configs/render_cx.yaml")
# # logger.info(f"Motions are rendered here:\n{figpath}")
# from mld.utils.demo_utils import render_batch
# blenderpath = cfg.RENDER.BLENDER_PATH
# render_batch(os.path.dirname(npypath),
# execute_python=blenderpath,
# mode="sequence") # sequence
# logger.info(f"Motions are rendered here:\n{os.path.dirname(npypath)}")
if __name__ == "__main__":
main()