-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_osm.py
571 lines (478 loc) · 19.2 KB
/
lib_osm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"""
Funcitons to operate with OSM data. https://planet.openstreetmap.org/
- 2019.08.23 OSRM
- 2019.08.15 OSM(XML) Parser.
"""
import os
os.system
import time
import subprocess
import geopy
import Levenshtein
import re
"""Part1, Filtering & extracting...
Although "OSMRailway" code gives a lot of references to extract network, the process
of filter, creating database takes relatively a long time.
An alternative way is to use commond line tools, first do a rough filter that reduces the data to a manageable level,
then process with python.
Two tools are candidates: 1. osmium tool (https://docs.osmcode.org/osmium/latest/)
2. osmosis (https://wiki.openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.46#--tag-filter_.28--tf.29)
"""
def osmFilter(infile, type='highway'):
""" Rely on osmium command line tool
do the basic filtering task.
"""
key = 'highway'
values = ['motorway', 'trunk', 'primary', 'secondary', 'tertiary']
suffix = '_link'
vs = []
for v in values:
vs += [v, v+suffix]
values = vs
t1 = time.time()
print('Extraction starts--step1, filtering key:', key)
middle_file1 = infile[:-8]+'-'+key+'.osm.pbf' ##### 加了一个key名
os.system('osmium tags-filter -o %s %s %s' % (middle_file1, infile, key))
print('Extract %s finished, time used %ds..' % (key, int(time.time()-t1)))
print('Extraction starts, filtering values:')
print(values)
for v in values:
outfile = middle_file1[:-8]+'-'+v+'.osm.pbf'
os.system('osmium tags-filter -o %s %s %s=%s'%(outfile, middle_file1, key,v))
print('Extract %s finished, time used %ds..'%(v,int(time.time()-t1)))
outfile2 = outfile[:-8]+'-loc'+'.osm.pbf'
add_loc2ways(outfile,outfile2)
print(' Add location finished, time used %ds..'%(int(time.time()-t1)))
print('Finihsed...')
def extractTransport(infile, keys, pairs, addLocation=False, removeTemp=True):
"""
A substitute for Sebastian's "1ExtractTransport.py" program.
Rely on osmium command line tool
根据这个函数可以在将来更改要过滤的键/值,执行不同的过滤
(在相同目录下生成infile-transport.osm.pbf文件)
"""
# keys = ["bus", "tram", "rail", "subway", "railway", "public_transport", "station", "aerialway"]
# pairs = {
# "site": ["stop_area","stop_area_group"],
# "building": ["train_station","station"],
# "route": ["bus","tram","train","railway","light_rail","rail","subway","ferry"],
# "highway": ["bus_stop","tram_stop","forward_stop","backward_stop"],
# "ferry": ["yes"],
# "amenity": ["ferry_terminal","bus_station"],
# }
t1 = time.time()
tempfiles = []
print('Step 1, key filtering. Extraction starts.....')
for k in keys: # 只限制 键
print(' %s..'%k)
outfile = infile[:-8]+'-'+k+'.osm.pbf'
os.system('osmium tags-filter -o %s %s %s'%(outfile, infile, k))
print('Extract %s finished, time used %ds..'%(k,int(time.time()-t1)))
tempfiles.append(outfile)
print('Step 2-1, key filtering...')
to_removes = []
for k in pairs: # 键值对中只限制 键
print(' %s..'%k)
outfile = infile[:-8]+'-'+k+'.osm.pbf'
os.system('osmium tags-filter -o %s %s %s'%(outfile, infile, k))
print('Extract %s finished, time used %ds..'%(k,int(time.time()-t1)))
to_removes.append(outfile)
print('Step 2-2, key-value filtering...')
for k in pairs: # 键值对中,加入对于 值 的限制
values = pairs[k]
temp_file = infile[:-8]+'-'+k+'.osm.pbf' # 以中间文件作为输入,加上值限制
for v in values:
outfile = infile[:-8]+'-'+k+'-'+v+'.osm.pbf'
os.system('osmium tags-filter -o %s %s %s=%s'%(outfile, temp_file, k,v))
print('Extract %s=%s finished, time used %ds..'%(k,v,int(time.time()-t1)))
tempfiles.append(outfile)
print('Remove temp file %s'%temp_file)
os.remove(temp_file)
outfile = infile[:-8]+'-transport.osm.pbf'
merge_files(tempfiles, outfile) # 合并文件,有序且去重的
if removeTemp: # 不保留中间生成的文件
for f in tempfiles: # 删除中间生成的文件
print('Remove temp file %s' % f)
os.remove(f)
if addLocation: ### 如果要往原文件的way中添加位置,则执行
outfile2 = outfile[:-8]+'-loc'+'.osm.pbf'
add_loc2ways(outfile,outfile2)
print('Add location finished, time used %ds..'%(int(time.time()-t1)))
print('Finish! Total time used: %ds' %int(time.time()-t1))
def add_loc2ways(infile, outfile):
""" 向way中添加节点位置
The out data can be processed with pyosmium like :
for n in w.nodes:
n.lon,n.lat
"""
t1 = time.time()
commond = 'osmium add-locations-to-ways --overwrite -o %s %s'%(outfile, infile)
p = subprocess.Popen(commond, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
for line in p.stdout.readlines():
print(line)
print('Add location to ways finish, time used:',time.time()-t1)
def merge_files(list_files, outfile):
""" 合并文件,是有序且去重的
"""
files = ''
for f in list_files: # 连接所有生成的中间文件
files += f+' '
files = files.rstrip()
os.system('osmium merge %s -o %s'%(files, outfile)) # 有序且去重的
def convert_format(infile, outfile):
""" 转换文件格式
"""
os.system('osmium cat -o %s %s'%(outfile, infile))
def filterStations(X):
"""过滤火车站
X: pyosmium object
"""
### 需要去除的osm对象
excudes = ["subway", "light_rail", "tram", "bus", "monorail"] # monorail 单轨
for k in excudes:
if k in X.tags:
if X.tags.get(k) in ["yes"]:
return False
if "railway" in X.tags:
if X.tags.get("railway") in ["abandoned","disused","ligh_rail","subway"]:
return False
if "station" in X.tags:
if X.tags.get("station") in ["light_rail","subway", "monorail"]:
return False
### 需要保留的osm对象
keep=False
if "railway" in X.tags:
if X.tags.get("railway") in ["stop","station","halt","stop_position"]:
keep=True
#if "site" in X.tags:
# if X.tags.get("site") in ["stop_area","stop_area_group"]:
# keep=True
return keep
def filterRailways(X):
""" 过滤火车轨道
X: pyosmium object 只过滤way就行了
"""
### 不是火车铁路轨道的去除,废弃的去除
excudes = ["subway", "light_rail", "tram", "bus", "monorail"] # monorail 单轨
for k in excudes:
if k in X.tags:
if X.tags.get(k) in ["yes"]:
return False
for c in ['route', 'railway']:
# if c in X.tags:
# if X.tags.get(c) in ["abandoned","disused","ligh_rail","subway"]:
# return False
if c in X.tags and X.tags.get(c,'')=='rail':
return True
def convert_maxspeed(inmaxspeed):
"""
inmaxspeed: string , '160 kph', '90mph', '120'
"""
spd = re.sub(r'\D','',inmaxspeed) # remove non-digit
if spd == '': ### 没有一个有效的值
return -1
if 'mph' in inmaxspeed:
return round(float(spd)*1.60934,2)
else:
return round(float(spd),2)
###############################################################################
"""
PART2, Geocoding(address-->location) rely on Nominatim,
"""
def geocode(name, maxResults=3,bbox=[(-90,-180),(90,180)],tolerance=0.8, mode='local',Type='station'):
""" geocode
:param name: station name to query
:param maxResults: the number of results return from Nominatim, the more it returns, the more chances to get the results you want
:param bbox: bounding box
:param tolerance: Levenshtein ratio the measure the similarity between result and query
:param mode: 'local' 'online'
:param Type: Type to query, can be None. For example: 'station'
:return: OsmResult object
"""
url = 'localhost/nominatim'
if Type:
query = name+'+['+Type+']'
else:
query = name
if mode=='local': ## 本地服务器
g = geopy.geocoders.Nominatim(domain=url,scheme='http',bounded=True, view_box = bbox,timeout=None)
if mode=='online': ###
g = geopy.geocoders.Nominatim(bounded=True, view_box = bbox,timeout=None)
list_r = g.geocode(query, exactly_one=False, limit=maxResults, language='en',addressdetails=True) # ,namedetails=True
if not list_r: ## 没有结果
return None
for r in list_r:
o = _get_r(name, r, tolerance)
if o:
return o
def geocodeGoogle():
### 基本上不能用
api_key = 'AIzaSyAVwjaaOBKbssuyQsvyqQAQDwfuzO1PKCA'
g = geopy.geocoders.GoogleV3(api_key=api_key, timeout=None, domain='maps.googleapis.com')
def _get_r(name, r, tolerance):
##
if not r:
return None
o = OsmResult(r.raw)
if name in o.synonyms or _clean_name(name) in o.synonyms: # Exact match --> perfect!
return o
else: # with tolerance
for n in o.synonyms:
d1 = Levenshtein.ratio(n, name)
d2 = Levenshtein.ratio(n, _clean_name(name))
if d1>=tolerance or d2>=tolerance:
o.set_confidence(max(d1,d2))
return o
return None
def _clean_name(name):
#name = name.replace('(',' (').replace(')',') ')
#name = re.sub(' +',' ',name)
if name.endswith("Hbf"):
return name.replace("Hbf","Hauptbahnhof")
return name
class OsmResult:
def __init__(self, json_content):
# create safe shortcuts
self._address = json_content.get('address', {})
self.raw = json_content
self.confidence = -1
def set_confidence(self, conf):
self.confidence = conf
def get_confidence(self):
if self.confidence>0:
return self.confidence
def to_dict(self,name=None,utc=None,country=None):
if not name:
name = self.name
out = {name:{}}
synonyms = ''
for s in self.synonyms:
synonyms+=s+';'
out[name] = {'lon':self.lon,'lat':self.lat,'synonyms':synonyms}
if utc:
out[name]['UTC']=utc
if country:
out[name]['country']=country
return out
@property
def lat(self):
lat = self.raw.get('lat')
if lat:
return float(lat)
@property
def lon(self):
lon = self.raw.get('lon')
if lon:
return float(lon)
@property
def address(self):
return self.raw.get('display_name')
@property
def name(self):
return self.raw['namedetails']['name']
@property
def country(self):
if not self._address:
return 'nan'
return self._address.get('country')
@property
def synonyms(self):
if 'namedetails' in self.raw:
return set(self.raw['namedetails'].values())
else:
return [self.raw['display_name']]
###############################################################################
"""
PART3, parse osm xml.
"""
import lxml.etree as ET
from shapely.geometry import Point
from shapely.geometry import MultiPoint
from shapely.geometry import LineString
from shapely.geometry import MultiLineString
from shapely.geometry import MultiPolygon
from shapely.geometry import Polygon
import pandas as pd
import numpy as np
import re
class OSMXML:
def __init__(self):
pass
def load_data(self, osmfile):
"""加载.osm格式的文件到内存,直接组装好每个对象
"""
self.tree = ET.parse(osmfile)
self.root = self.tree.getroot()
self.osm_objs = self.root.findall("./*")
#self.nodes = self.root.findall('./node')
#self.ways = self.root.findall('./way')
#self.relations = self.root.findall('./relation')
self.set_members = set() # 记录作为成员的osm objects...
def create_geometry(self):
self.dict_IDInfo = {}
for o in self.osm_objs:
if o.tag=='node':
ID, p, type_, names = self.parseN(o)
elif o.tag=='way':
ID, p, type_, names = self.parseW(o)
elif o.tag=='relation':
ID, p, type_, names = self.parseR(o)
if p: # 得有位置,没位置没意义
self.dict_IDInfo[ID] = {'geometry':p, 'names':names, 'type':type_}
def create_df(self):
out = []
for ID in self.dict_IDInfo:
if ID in self.set_members: # 删除成员
continue
location = self.dict_IDInfo[ID]['geometry']
type_ = self.dict_IDInfo[ID]['type']
if type_=='useless':
continue
names = self.dict_IDInfo[ID]['names']
for name in names:
out.append([name, ID, location[0], location[1], type_])
return pd.DataFrame(out,columns=['name', 'id', 'lon', 'lat', 'type'])
def parseN(self,n):
ID = int(n.attrib['id'])
lat = float(n.attrib['lat'])
lon = float(n.attrib['lon'])
type_, names = self.parseTag(n)
return ID, (lon,lat), type_, names
def parseW(self,w):
ID = int(w.attrib['id'])
points = []
set_names = set()
for n in w.findall('nd'):
nid = int(n.attrib['ref'])
if not nid in self.dict_IDInfo:
print("no way member ID:",nid)
continue
n_names = self.dict_IDInfo[nid]['names']
set_names = set_names.union(n_names) # 成员的名字添加到way中
points.append(self.dict_IDInfo[nid]['geometry'])
self.set_members.add(nid) ## 待删除的成员
type_, names = self.parseTag(w)
set_names.union(names)
return ID, self._represent_point(points), type_, set_names
## 判断是否是封闭多边形
#if points[0] == points[-1]:
# return ID, Polygon(points)
#else:
# return ID, LineString(points)
def parseR(self,r):
ID = int(r.attrib['id'])
points = []
set_names = set()
for m in r.findall('member'):
if m.attrib['type']=='way':
m_id = int(m.attrib['ref'])
elif m.attrib['type']=='node':
m_id = int(m.attrib['ref'])
elif m.attrib['type']=='relation':
m_id = int(m.attrib['ref'])
if not m_id in self.dict_IDInfo:
print('no relation member:',m_id)
continue
m_names = self.dict_IDInfo[m_id]['names']
set_names = set_names.union(m_names) # 成员的名字添加到relation中
points.append(self.dict_IDInfo[m_id]['geometry'])
self.set_members.add(m_id) ## 待删除的成员
type_, names = self.parseTag(r)
set_names.union(names)
return ID, self._represent_point(points), type_, set_names
def parseTag(sef,o):
"""解析tag
o: osm object
"""
set_names = set()
type_ = ""
for tag in o.findall('tag'):
if 'railway'== tag.attrib['k']:
type_ = tag.attrib['v'] ## station, stop, halt
if 'name' in tag.attrib['k']:
value = tag.attrib['v']
if re.search('\d.*(км|km|კმ|Km|KM)',value): # 没有有用的标签
return "useless", set()
set_names.add(value)
return type_, set_names
def query(self,ID):
return self.root.find('*[@id="%d"]'%ID)
#def name(self,name):
# n.find('tag[@k="name"]').attrib
def _represent_point(self, points):
return None if len(points)==0 else list(map(np.median,zip(*points)))
def get_represent_point(points):
return None if len(points)==0 else list(map(np.median,zip(*points)))
###############################################################################
"""
PART4, fuzzy match
"""
from fuzzywuzzy import fuzz, process
def fuzzy_merge(df1, df2, key1, key2, threshold=90, limit=2):
'''
df_1 is the left table to join
df_2 is the right table to join
key1 is the key column of the left table
key2 is the key column of the right table
threshold is how close the matches should be to return a match
limit is the amount of matches will get returned, these are sorted high to low
'''
s = df2[key2].tolist()
m = df1[key1].apply(lambda x: process.extract(x, s, limit=limit)) #将函数应用到由各列或行形成的一维数组上。DataFrame的apply方法
df1['matches'] = m
m2 = df1['matches'].apply(lambda x: ','.join([i[0] for i in x if i[1] >= threshold]))
df1['matches'] = m2
return df1
###############################################################################
"""
PART5, OSRM
"""
import simplejson
import urllib.request
class OSRM:
"""
OSRM路径规划
注意:所有的经纬度位置 都是 (lon,lat)的形式
"""
def __init__(self, region='China'):
pass
# sudoPassword = '1358'
# filePaths = {'China': '/data/OSRM-Data/ChinaData/china-latest.osrm',
# 'Europe': '/data/OSRM-Data/EuropeData/europe-latest.osrm' }
# filePath = filePaths[region]
# command = 'osrm-routed '+filePath +'&' ## --algorithm=MLD ## 指定algorithm时 欧洲数据会出错
#d = os.system('echo %s|sudo -S %s' % (sudoPassword, command))
#print('OSRM successfully started..') if d==0 else print('OSRM failed')
def queryRoute(self,source,destination,host="127.0.0.1:5000"):
""" location: (lon,lat)
返回的时间以 s 为单位
"""
lon1,lat1=source
lon2,lat2=destination
url="http://"+host+"/route/v1/driving/"
url+="%f,%f;"%(lon1,lat1)
url+="%f,%f"%(lon2,lat2)
url+="?steps=false&geometries=geojson"
XURL=-1
try:
XURL=urllib.request.urlopen(url)
L=simplejson.load(XURL)
coords=L["routes"][0]["geometry"]["coordinates"]
duration=float(L["routes"][0]["duration"])
steps=[]
for (lon,lat) in coords:
steps.append((lon,lat))
steps.append((coords[-1][0],coords[-1][1]))
except urllib.error.HTTPError:
steps=[]
duration=-1
if XURL!=-1:
XURL.close()
return steps, duration
## 用法
#Beijing = (116.36575426379041, 39.9196349206612)
#Guangzhou = (113.29426558032033,23.112904118079268)
#(116.420991, 39.901642) (116.4, 39.95)
#steps,traveltime=osrm.queryRoute(Guangzhou,Beijing,"127.0.0.1:5000",)
#print("Travel time (in minutes):",traveltime)
#print("Points along route:",route)