You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@YJZLuckyBoy
I encountered a warning message in my ROS system with the following content:
Large velocity detected, triggering IMU-preintegration reset and unable to build proper map of the environment
Run the following launch commands:
roslaunch liorf run_lio_sam_livox.launch
roslaunch livox_ros_driver livox_lidar_msg.launch
Modify the lio_sam_livox.yaml configuration file as follows:
Set imuTopic to /livox/imu instead of imu_raw.
Use pointCloudTopic: "points_raw" for the pointCloudTopic.
Environment:
ROS distribution/version: [ROS1 , noetic]
Operating System: [Ubuntu 20.04]
using Livox Horizon Lidar
Can someone help me resolve this issue?
Param File:
liorf:
Topics
pointCloudTopic: "points_raw" # Point cloud data
imuTopic: "/livox/imu" # IMU data
odomTopic: "odometry/imu" # IMU pre-preintegration odometry, same frequency as IMU
gpsTopic: "odometry/gpsz" # GPS odometry topic from navsat, see module_navsat.launch file
useImuHeadingInitialization: false # if using GPS data, set to "true"
useGpsElevation: false # if GPS elevation is bad, set to "false"
gpsCovThreshold: 2.0 # m^2, threshold for using GPS data
poseCovThreshold: 25.0 # m^2, threshold for using GPS data
Export settings
savePCD: false # TixiaoShan/LIO-SAM#3
savePCDDirectory: "/Downloads/LOAM/" # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation
Sensor Settings
sensor: livox # lidar sensor type, 'velodyne' or 'ouster' or 'livox' or 'robosense'
N_SCAN: 6 # number of lidar channel (i.e., Velodyne/Ouster: 16, 32, 64, 128, Livox Horizon: 6)
Horizon_SCAN: 4000 # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048, Livox Horizon: 4000)
downsampleRate: 1 # default: 1. Downsample your data if too many points(line). i.e., 16 = 64 / 4, 16 = 16 / 1
point_filter_num: 3 # default: 3. Downsample your data if too many points(point). e.g., 16: 1, 32: 5, 64: 8
lidarMinRange: 1.0 # default: 1.0, minimum lidar range to be used
lidarMaxRange: 1000.0 # default: 1000.0, maximum lidar range to be used
loopClosureEnableFlag: true
loopClosureFrequency: 1.0 # Hz, regulate loop closure constraint add frequency
surroundingKeyframeSize: 50 # submap size (when loop closure enabled)
historyKeyframeSearchRadius: 15.0 # meters, key frame that is within n meters from current pose will be considerd for loop closure
historyKeyframeSearchTimeDiff: 30.0 # seconds, key frame that is n seconds older will be considered for loop closure
historyKeyframeSearchNum: 25 # number of hostory key frames will be fused into a submap for loop closure
loopClosureICPSurfLeafSize: 0.3 # downsample icp point cloud
historyKeyframeFitnessScore: 0.3 # icp threshold, the smaller the better alignment
Visualization
globalMapVisualizationSearchRadius: 1000.0 # meters, global map visualization radius
globalMapVisualizationPoseDensity: 10.0 # meters, global map visualization keyframe density
globalMapVisualizationLeafSize: 1.0 # meters, global map visualization cloud density
make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_link
I encountered a warning message in my ROS system with the following content:
Large velocity detected, triggering IMU-preintegration reset and unable to build proper map of the environment
1. Run the following launch commands:
* `roslaunch liorf run_lio_sam_livox.launch`
* `roslaunch livox_ros_driver livox_lidar_msg.launch`
2. Modify the `lio_sam_livox.yaml` configuration file as follows:
* Set `imuTopic` to `/livox/imu` instead of `imu_raw`.
* Use `pointCloudTopic: "points_raw"` for the `pointCloudTopic`.
@YJZLuckyBoy
I encountered a warning message in my ROS system with the following content:
Large velocity detected, triggering IMU-preintegration reset and unable to build proper map of the environment
Run the following launch commands:
roslaunch liorf run_lio_sam_livox.launch
roslaunch livox_ros_driver livox_lidar_msg.launch
Modify the
lio_sam_livox.yaml
configuration file as follows:imuTopic
to/livox/imu
instead ofimu_raw
.pointCloudTopic: "points_raw"
for thepointCloudTopic
.Environment:
Can someone help me resolve this issue?
Param File:
liorf:
Topics
pointCloudTopic: "points_raw" # Point cloud data
imuTopic: "/livox/imu" # IMU data
odomTopic: "odometry/imu" # IMU pre-preintegration odometry, same frequency as IMU
gpsTopic: "odometry/gpsz" # GPS odometry topic from navsat, see module_navsat.launch file
Frames
lidarFrame: "base_link"
baselinkFrame: "base_link"
odometryFrame: "odom"
mapFrame: "map"
GPS Settings
useImuHeadingInitialization: false # if using GPS data, set to "true"
useGpsElevation: false # if GPS elevation is bad, set to "false"
gpsCovThreshold: 2.0 # m^2, threshold for using GPS data
poseCovThreshold: 25.0 # m^2, threshold for using GPS data
Export settings
savePCD: false # TixiaoShan/LIO-SAM#3
savePCDDirectory: "/Downloads/LOAM/" # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation
Sensor Settings
sensor: livox # lidar sensor type, 'velodyne' or 'ouster' or 'livox' or 'robosense'
N_SCAN: 6 # number of lidar channel (i.e., Velodyne/Ouster: 16, 32, 64, 128, Livox Horizon: 6)
Horizon_SCAN: 4000 # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048, Livox Horizon: 4000)
downsampleRate: 1 # default: 1. Downsample your data if too many points(line). i.e., 16 = 64 / 4, 16 = 16 / 1
point_filter_num: 3 # default: 3. Downsample your data if too many points(point). e.g., 16: 1, 32: 5, 64: 8
lidarMinRange: 1.0 # default: 1.0, minimum lidar range to be used
lidarMaxRange: 1000.0 # default: 1000.0, maximum lidar range to be used
IMU Settings
imuType: 0 # 0: 6-axis 1: 9-axis
imuRate: 200.0
imuAccNoise: 3.9939570888238808e-03
imuGyrNoise: 1.5636343949698187e-03
imuAccBiasN: 6.4356659353532566e-05
imuGyrBiasN: 3.5640318696367613e-05
imuGravity: 9.80511
imuRPYWeight: 0.01
Extrinsics: T_lb (lidar -> imu)
extrinsicTrans: [0.0, 0.0, 0.0]
extrinsicRot: [-1, 0, 0,
0, 1, 0,
0, 0, -1]
This parameter is set only when the 9-axis IMU is used, but it must be a high-precision IMU. e.g. MTI-680
extrinsicRPY: [0, -1, 0,
1, 0, 0,
0, 0, 1]
voxel filter paprams
mappingSurfLeafSize: 0.15 # default: 0.4 - outdoor, 0.2 - indoor
robot motion constraint (in case you are using a 2D robot)
z_tollerance: 1000 # meters
rotation_tollerance: 1000 # radians
CPU Params
numberOfCores: 4 # number of cores for mapping optimization
mappingProcessInterval: 0.0 # seconds, regulate mapping frequency
Surrounding map
surroundingkeyframeAddingDistThreshold: 0.5 # meters, regulate keyframe adding threshold
surroundingkeyframeAddingAngleThreshold: 0.2 # radians, regulate keyframe adding threshold
surroundingKeyframeDensity: 2.0 # meters, downsample surrounding keyframe poses
surroundingKeyframeSearchRadius: 50.0 # meters, within n meters scan-to-map optimization (when loop closure disabled)
surroundingKeyframeMapLeafSize: 0.3 # downsample local map point cloud
Loop closure
loopClosureEnableFlag: true
loopClosureFrequency: 1.0 # Hz, regulate loop closure constraint add frequency
surroundingKeyframeSize: 50 # submap size (when loop closure enabled)
historyKeyframeSearchRadius: 15.0 # meters, key frame that is within n meters from current pose will be considerd for loop closure
historyKeyframeSearchTimeDiff: 30.0 # seconds, key frame that is n seconds older will be considered for loop closure
historyKeyframeSearchNum: 25 # number of hostory key frames will be fused into a submap for loop closure
loopClosureICPSurfLeafSize: 0.3 # downsample icp point cloud
historyKeyframeFitnessScore: 0.3 # icp threshold, the smaller the better alignment
Visualization
globalMapVisualizationSearchRadius: 1000.0 # meters, global map visualization radius
globalMapVisualizationPoseDensity: 10.0 # meters, global map visualization keyframe density
globalMapVisualizationLeafSize: 1.0 # meters, global map visualization cloud density
Navsat (convert GPS coordinates to Cartesian)
navsat:
frequency: 50
wait_for_datum: false
delay: 0.0
magnetic_declination_radians: 0
yaw_offset: 0
zero_altitude: true
broadcast_utm_transform: false
broadcast_utm_transform_as_parent_frame: false
publish_filtered_gps: false
EKF for Navsat
ekf_gps:
publish_tf: false
map_frame: map
odom_frame: odom
base_link_frame: base_link
world_frame: odom
frequency: 50
two_d_mode: false
sensor_timeout: 0.01
-------------------------------------
External IMU:
-------------------------------------
imu0: imu_correct
make sure the input is aligned with ROS REP105. "imu_correct" is manually transformed by myself. EKF can also transform the data using tf between your imu and base_link
imu0_config: [false, false, false,
true, true, true,
false, false, false,
false, false, true,
true, true, true]
imu0_differential: false
imu0_queue_size: 50
imu0_remove_gravitational_acceleration: true
-------------------------------------
Odometry (From Navsat):
-------------------------------------
odom0: odometry/gps
odom0_config: [true, true, true,
false, false, false,
false, false, false,
false, false, false,
false, false, false]
odom0_differential: false
odom0_queue_size: 10
x y z r p y x_dot y_dot z_dot r_dot p_dot y_dot x_ddot y_ddot z_ddot
process_noise_covariance: [ 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 10.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.015]
The text was updated successfully, but these errors were encountered: