-
Notifications
You must be signed in to change notification settings - Fork 0
/
lattice_models_anki.tex
487 lines (422 loc) · 18.1 KB
/
lattice_models_anki.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The first part of the header needs to be copied
% into the note options in Anki.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% layout in Anki:
\documentclass[10pt]{article}
\usepackage[a4paper]{geometry}
\geometry{paperwidth=.5\paperwidth,paperheight=100in,left=2em,right=2em,bottom=1em,top=2em}
\pagestyle{empty}
\setlength{\parindent}{0in}
% encoding:
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
% packages:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{centernot}
% commands
\let\oldemptyset\emptyset
\let\emptyset\varnothing
% Letter shorthands
\newcommand{\C}{\mathbb C}
\newcommand{\E}{\mathbb E}
\newcommand{\F}{\mathbb F}
\newcommand{\K}{\mathbb K}
\newcommand{\N}{\mathbb N}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\Z}{\mathbb Z}
\newcommand{\mcA}{\mathcal A}
\newcommand{\mcB}{\mathcal B}
\newcommand{\mcC}{\mathcal C}
\newcommand{\mcD}{\mathcal D}
\newcommand{\mcE}{\mathcal E}
\newcommand{\mcF}{\mathcal F}
\newcommand{\mcG}{\mathcal G}
\newcommand{\mcH}{\mathcal H}
\newcommand{\mcM}{\mathcal M}
\newcommand{\mcN}{\mathcal N}
\newcommand{\mcO}{\mathcal O}
\newcommand{\mcP}{\mathcal P}
\newcommand{\mcQ}{\mathcal Q}
\newcommand{\mcR}{\mathcal R}
\newcommand{\mcS}{\mathcal S}
\newcommand{\mcT}{\mathcal T}
\newcommand{\mcU}{\mathcal U}
\newcommand{\mcV}{\mathcal V}
\newcommand{\eps}{\varepsilon}
\newcommand{\Eps}{\mathcal E}
\newcommand{\curlybrack}[1]{\left\{ #1\right\}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\norm}[1]{\left\lVert #1\right\rVert}
\newcommand{\inn}[2]{\left\langle #1, #2\right\rangle}
\newcommand{\floor}[1]{\left\lfloor #1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil #1\right\rceil}
\newcommand{\doublesqbrack}[1]{[\![#1]\!]}
\newcommand{\imp}{\implies}
\newcommand{\for}{\forall}
\newcommand{\nin}{\notin}
\newcommand{\comp}{\circ}
\newcommand{\union}{\cup}
\newcommand{\inter}{\cap}
\newcommand{\Union}{\bigcup}
\newcommand{\Inter}{\bigcap}
\newcommand{\hatplus}{\mathbin{\widehat{+}}}
\newcommand{\symdif}{\mathbin\varbigtriangleup}
\newcommand{\aeeq}{\overset{\text{ae}}=}
\newcommand{\lexlt}{\overset{\text{lex}}<}
\newcommand{\colexlt}{\overset{\text{colex}}<}
\newcommand{\wto}{\overset w\to}
\newcommand{\wstarto}{\overset{w*}\to}
\renewcommand{\vec}[1]{\boldsymbol{\mathbf{#1}}}
\renewcommand{\bar}[1]{\overline{#1}}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Ber}{Ber}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\esssup}{ess sup}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\interior}{int}
\DeclareMathOperator{\lhs}{LHS}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Re}{Re}
\DeclareMathOperator{\rhs}{RHS}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Var}{Var}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Following part of header NOT to be copied into
% the note options in Anki.
% ! Anki will throw an error !
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pdf layout:
\geometry{paperheight=74.25mm}
\usepackage{pgfpages}
\pagestyle{empty}
\pgfpagesuselayout{8 on 1}[a4paper,border shrink=0cm]
\makeatletter
\@tempcnta=1\relax
\loop\ifnum\@tempcnta<9\relax
\pgf@pset{\the\@tempcnta}{bordercode}{\pgfusepath{stroke}}
\advance\@tempcnta by 1\relax
\repeat
\makeatother
% notes, fields, tags:
\def \ifempty#1{\def\temp{#1} \ifx\temp\empty }
\newcommand{\xfield}[1]{
#1\par
\vfill
{\tiny\texttt{\parbox[t]{\textwidth}{\localtag\hfill\\\globaltag\hfill\uuid}}}
\newpage}
\newenvironment{field}{}{\newpage}
\newif\ifnote
\newenvironment{note}{\notetrue}{\notefalse}
\newcommand{\localtag}{}
\newcommand{\globaltag}{}
\newcommand{\uuid}{}
\newcommand{\tags}[1]{
\ifnote
\renewcommand{\localtag}{#1}
\else
\renewcommand{\globaltag}{#1}
\fi
}
\newcommand{\xplain}[1]{\renewcommand{\uuid}{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The following line again needs to be copied
% into Anki:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The notes themselves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% I - Percolation and its phase transition
% 1. Percolation phase transition
\tags{percolation}
\begin{note}
\tags{definition}
\xplain{percolation-site-def}
\xfield{Site percolation}
\begin{field}
For each vertex $x$ of a graph $G$, we draw an independent Bernoulli random variable $w(x)$ with probability $p$. We say $x$ is an {\it open site} if $w(x) = 1$. An edge is {\it open} if both of its sites are open.
\end{field}
\end{note}
\begin{note}
\xplain{percolation-infinite-cluster-basic}
\tags{infinite-cluster}
\xfield{Basic results about the existence of an infinite cluster}
\begin{field}
\begin{itemize}
\item Every site has the same probability of being in an infinite cluster. Proof: Translation invariance.
\item $P_p(\text{infinite cluster}) > 0 \iff P_p(0 \leftrightarrow \infty) > 0$. Proof: Translation invariance + countability of $\Z^d$.
\item Probability is monotone in $p$. Proof: Coupling.
\item Equivalent to the existence of an infinite open path. Proof: Build the path inductively.
\end{itemize}
\end{field}
\end{note}
\begin{note}
\xplain{percolation-infinite-cluster-zero-one}
\tags{infinite-cluster}
\xfield{The probability of an infinite cluster is either $0$ or $1$.}
\begin{field}
Existence of an infinite cluster is a tail event, so done by Kolmogorov's 0-1 law.
\end{field}
\end{note}
\tags{percolation::zd}
\begin{note}
\tags{infinite-cluster}
\xplain{percolation-zd-critical-probability-pos}
\xfield{Prove $0 < p_c$ in $\Z^d$.}
\begin{field}
If $p < \frac 1{2d}$, then, for all $n$,
\begin{align*}
P_p(0 \leftrightarrow \infty)
& \le P_p(\exists \text{ path of length $n$ starting at } 0) \\
& \le (2d)^n p^{n + 1} \\
& \to 0
\end{align*}
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster}
\xplain{percolation-zd-critical-probability-lt-one}
\xfield{Prove $p_c < 1$ in $\Z^d, d \ge 2$.}
\begin{field}
It's enough to show it for $d = 2$. If $p > \frac 78$, then
\begin{align*}
& P_p(\text{no infinite cluster}) \\
& = P_p(\exists \text{ closed loop around } [-n, n]^2) \\
& \le \sum_m P_p(\exists \text{ closed loop around $[-n, n]^2$ through } (m, 0)) \\
& \le \sum_{m \ge n} P_p(\exists \text{ closed path of length } m) \\
& \le \sum_{m \ge n} 8^m (1 - p)^{m + 1} \\
& \to 0
\end{align*}
\end{field}
\end{note}
% 2. Number of infinite clusters
\begin{note}
\xplain{percolation-translation-invariant}
\xfield{Translation-invariant percolation events have probability $0$ or $1$.}
\begin{field}
Any percolation event can be approximated by a cylindrical event (by Dynkin). Hence if $A$ is a translation-invariant event, find $B$ a cylindrical event such that $P_p(A \symdif B) \le \eps$. Shift the event $B$ enough so that the resulting cylindrical event $B'$ is independent from $B$. Then
\begin{align*}
\abs{P_p(A) - P_p(B)^2}
& = \abs{P_p(A) - P_p(B \inter B')} \\
& \le P_p(A \symdif (B \inter B')) \\
& \le P_p(A \symdif B) + P_p(A \symdif B') \\
& \le 2\eps
\end{align*}
Taking $\eps \to 0$, we get $P_p(A)^2 = P_p(A)$, as wanted.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster supercritical-percolation}
\xplain{percolation-zd-supercritical-clusters-ae-constant}
\xfield{The number of infinite clusters is ae constant for supercritical percolation in $\Z^d$.}
\begin{field}
For each $k$, $N = k$ is a translation-invariant event, hence has probability $0$ or $1$.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster supercritical}
\xplain{percolation-zd-supercritical-clusters-one-or-infty}
\xfield{The number of infinite clusters is $1$ or $\infty$ for supercritical percolation in $\Z^d$.}
\begin{field}
If $N = k \in\ ]1, \infty[$, there's a nonzero probability to connect two clusters, hence $P(N = k) < 1$. So $P(N = k) = 0$.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster supercritical-percolation}
\xplain{percolation-zd-supercritical-clusters-not-infty}
\xfield{The number of infinite clusters is not $\infty$ for supercritical percolation in $\Z^d$.}
\begin{field}
Assume $P(N = \infty) = 1$.
\begin{itemize}
\item For all $k$, there exists $n$ such that the probability of $k$ disjoint clusters intersecting $[-n, n]^d$ is strictly positive. Proof: Union over $n$ of these events is $N \ge k$.
\item Find a box intersecting three disjoint clusters that are far enough apart. Resample that box.
\item The probability of a point being a trifurcation is translation invariant and strictly positive.
\item $C m^d = \E[\#\text{ trifurcations in } [1, m]^d] \le \#\partial [1, m]^d = O(m^{d - 1})$. Contradiction.
\end{itemize}
\end{field}
\end{note}
% 3. Exponential decay in the subcritical regime
\begin{note}
\tags{pivotal}
\xplain{percolation-pivotal-def}
\xfield{Pivotals}
\begin{field}
For an increasing event $A$, a site $z$ is {\it $A$-pivotal} for a configuration $v$ if $v^{z, 0} \nin A$ but $v^{z, 1} \in A$.
\end{field}
\end{note}
\begin{note}
\tags{pivotal}
\xplain{percolation-russo-formula}
\xfield{Russo's formula}
\begin{field}
If $A$ is an increasing cylindrical event, then
$$\frac{dP_p(A)}{dp} = \E_p[\#\text{ pivotals of }A]$$
\begin{proof}
Write $S$ the finite set of states that $A$ depends on. Couple percolations by $w_p(x) := 1_{X(x) \le p}$ where $X(x) \sim \mathrm{Unif}[0, 1]$ are independent. This shows $p \mapsto P_p(A)$ is monotone. Hence, for $\eps > 0$ (treat $\eps < 0$ similarly),
\begin{align*}
& P_{p + \eps}(A) - P_p(A) = P(w_{p + \eps} \in A, w_p \nin A) \\
& = \sum_{x \in S} P(X(x) \in [p, p + \eps[, x \text{ pivotal for } w_p) + O(\eps^2) \\
& = \eps \E_p[\#\text{ pivotals of }A]
\end{align*}
as $X(x) \in [p, p + \eps[$ for several $x \in S$ with probability $O(\eps^2)$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster subcritical}
\xplain{percolation-exponential-decay-setup}
\xfield{Definitions and setup for exponential decay}
\begin{field}
\begin{itemize}
\item $\mathcal S$ the set of finite connected sets in $\Z^d$ containing the origin and whose complement is connected.
\item If $S \in \mathcal S$, $O(S)$ is the set of neighbors of $S$ and $\tilde S = O(S) \union S$.
\item For $S \in \mathcal S$, $C_S$ is the connected component of $0$ for percolation inside $S$.
\item $u_n(p) = P_p(0 \leftrightarrow \lambda_n)$.
\item $\varphi_p(S) = \E[\abs{O(S) \inter O(C_S)}]$ is the expected number of sites of $S^c$ that are neighbors of $C_S$.
\end{itemize}
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster subcritical}
\xplain{percolation-exponential-decay-subcritical}
\xfield{If $\varphi_p(S) < 1$ for some $S \in \mathcal S$, $P_p(0 \leftrightarrow \lambda_n)$ decays exponentially.}
\begin{field}
Find $n_0$ such that $S \subseteq \Lambda_{n_0}$. If $0 \leftrightarrow \lambda_n$, then there is a site $x \in C_S$ adjacent to a site $y \in O(S)$ such that $y \leftrightarrow \lambda_n$ outside of $\tilde C_S$. Therefore, if $ 0 \in D \subseteq S$,
\begin{align*}
& P_p(C_S = D, 0 \leftrightarrow \lambda_n) \\
& \le \sum_{y \in O(S) \inter O(D)} P_p(C_S = D, y \leftrightarrow \lambda_n \text{ outside of } \tilde D) \\
& = P_p(C_S = D) \sum_{y \in O(S) \inter O(D)} P_p(y \leftrightarrow \lambda_n \text{ outside of } \tilde D) \\
& \le P_p(C_S = D) \abs{O(S) \inter O(D)} u_{n - n_0}
\end{align*}
Summing over $D$, we get $u_n \le \varphi_p(S) u_{n - n_0}$, namely exponential decay.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster}
\xplain{percolation-exponential-decay-supercritical}
\xfield{If $p > p_c$, then $\inf_{S \in \mathcal S} \varphi_p(S) > 0$.}
\begin{field}
For all $S \in \mathcal S$, $\varphi_p(S) \ge P_p(0 \leftrightarrow \infty) > 0$.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster}
\xplain{percolation-exponential-decay-not-subcritical}
\xfield{If $\inf_{S \in \mathcal S} \varphi_{p_0}(S) > 0$, then $p_0 \ge p_c$.}
\begin{field}
Percolate in $\Lambda_n$. Call $U$ the set of points connected to $\lambda_n$. The expected number of closed $0 \leftrightarrow \lambda_n$-pivotals is $(1 - p)\frac{du_n(p)}{dp}$ by Russo. A pivotal $y$ is closed iff there is an open path from $0$ to a neighbor of $y$ in $S(U)$ (the component of $0$ in $\tilde U^c$), and in particular $y \in O(S(U))$. Hence, if $p > p_0$,
\begin{align*}
\frac{du_n(p)}{dp}
& = \frac 1{1 - p} \sum_{V \not\ni 0} \E\left[1_{U = V} \varphi_p(S(V))\right] \\
& \ge \frac\alpha{1 - p} P_p(0 \notin U) \ge \alpha
\end{align*}
Integrating,
$$P_p(0 \leftrightarrow \infty) \lim_{n \to \infty} u_n(p) \ge (p - p_0)\alpha > 0$$
\end{field}
\end{note}
% 4. The value of p_c on the triangular lattice
\tags{percolation::triangular}
\begin{note}
\tags{crossing}
\xplain{percolation-triangular-top-bottom-left-right}
\xfield{The probability of a left-right crossing in a rhombus is $\frac 12$.}
\begin{field}
Look at the set of sites connected to the top boundary. Either it reaches the bottom (and we have a top-bottom open crossing) or it doesn't (and the "lower boundary" of the set is a left-right closed crossing). Hence the probabilities of a top-bottom open crossing and of a left-right closed crossing add up to $1$. But they are equal by symmetry, hence they must be $\frac 12$.
\end{field}
\end{note}
\begin{note}
\tags{infinite-cluster critical}
\xplain{percolation-triangular-critical-le-half}
\xfield{For triangular percolation, $p_c \le \frac 12$.}
\begin{field}
At $p = \frac 12$, the probability of a left-right crossing is $\frac 12$. In particular, the probability of a point belonging to a cluster of diameter at least $N$ is at least $\frac 1{2(N + 1)}$. Hence we do not have exponential decay and $p_c \le \frac 12$.
\end{field}
\end{note}
\tags{general-models}
\begin{note}
\xplain{glauber-dynamic-def}
\xfield{Glauber dynamic}
\begin{field}
Update the configuration one state at a time. Forget a random state and pick between the two possible configurations $c$ and $d$ with probabilities
$$\frac{P(c)}{P(c) + P(d)}, \frac{P(d)}{P(c) + P(d)}$$
The state needn't be chosen with the same probability, but they must each have positive probability of being chosen.
\end{field}
\end{note}
\begin{note}
\xplain{glauber-dynamic-unique-measure}
\xfield{The Glauber dynamic gives rise to a unique stationary measure because...}
\begin{field}
...the Markov chain is
\begin{itemize}
\item aperiodic
\item irreducible
\item reversible
\end{itemize}
Indeed it is a random walk on the space of configurations (which is connected and finite).
\end{field}
\end{note}
\begin{note}
\xplain{harris-inequality}
\xfield{Harris inequality}
\begin{field}
If $A$, $B$, are two increasing cylindrical events, then $P_\beta(A \inter B) \ge P_\beta(A)P_\beta(B)$
\begin{proof}
Construct two Markov chains $X_n$ and $Y_n$ coupled through a Glauber dynamic such that $X_n \le Y_n$ and $Y_n$ is constrained to $B$ (possible because $B$ increasing and cylindrical). So $X_n \in A \implies Y_n \in A$ ($A$ is increasing). This proves $P_\beta(A \mid B) \ge P_\beta(A)$.
\end{proof}
\end{field}
\end{note}
\tags{percolation::triangular}
\begin{note}
\tags{Tags}
\xplain{Label}
\xfield{Triangular percolation has no infinite cluster at $p = \frac 12$.}
\begin{field}
Assume there is an infinite cluster with probability $1$. Consider the $(2N + 1) \times (2N + 1)$ rhombus $R_N$ centered at the origin and its sides $L_1, L_2, L_3, L_4$. Define $E_i$ the event that $L_i \leftrightarrow \infty$. By Harris, these events are positively correlated, so
$$P(E_1^c)^4 = \prod_i P(E_i^c) \le P(E_1^c, \dots, E_4^c) \le P(R_N \not\leftrightarrow \infty) \to 0$$
Hence $P(E_i) \to 1$ for each $i$ and the following happens with strictly positive probability: There are infinite open paths from $L_1$ and $L_3$ and infinite closed paths from $L_2$ and $L_4$. But in that case it is impossible to have a single infinite cluster. Contradiction.
\end{field}
\end{note}
% II - Conformal invariance of critical percolation on the triangular lattice
% 1. Russo-Seymour-Welsh bounds
\tags{ising-model}
\begin{note}
\xplain{ising-distrib-def}
\tags{definition}
\xfield{Ising distribution}
\begin{field}
\begin{align*}
P_\beta(\sigma)
& = \frac 1{Z_\beta}\exp\left(-\beta \sum_{x \sim y} 1_{\sigma_x \ne \sigma_y}\right) \\
& = \frac 1{Z'_\beta}\exp\left(-\frac\beta 2\sum_{x \sim y} \sigma_x \sigma_y\right)
\end{align*}
\end{field}
\end{note}
\begin{note}
\xplain{extend-ising-infinite}
\tags{}
\xfield{How to extend the Ising measure to an infinite graph?}
\begin{field}
Consider a cobounded sequence of sets of states $S_n$, define $P_n^+$ the Ising model conditioned on the spins being $+1$ outside $S_n$. For every increasing cylindrical event $A$, $P_n^+(A)$ decreases, so it has a limit $P^+(A)$. This defines $P^+$ for increasing cylindrical events. Now extend by Carathéodory.
Define $P^-$ similarly.
\end{field}
\end{note}
\begin{note}
\tags{}
\xplain{ising-coupling-sigma-n}
\xfield{How to couple the $\sigma_n^+$ together?}
\begin{field}
Pick a measure $\mu$ on $\Z^d$ such that $\mu \{x\} > 0$ for all $x$. Create a Markov chain on $\{(\sigma_0^+, \sigma_1^+, \dots) \mid \sigma_0^+ \le \sigma_1^+ \le \dots\}$, by starting at $1$ everywhere and each time resampling $x$ with probability $\mu \{x\}$. Each truncated Markov chain $(\sigma_0^+, \dots, \sigma_n^+)$ is irreducible, aperiodic, reversible and has a finite state space, so converges to a unique stable measure. Piece these measures together by Kolmogorov extension.
\end{field}
\end{note}
\end{document}