Skip to content

a minimal implementation of bezier curves in julia

License

Notifications You must be signed in to change notification settings

YangBo17/Bezier.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bezier.jl

a minimal implementation of nth-degree-Bezier curves in julia

Implementation

This module generates Bezier curves of arbitrary degree (in theory). The nth-Degree bezier curve is generated with Bernstein-Polynomials. Since julia has a efficient binomial function, this generation, The maximum number of control points is 67. For larger numbers, a buffer overflow occurs in the binomial function.

The degree of the Bezier curve is inferred from the number of control points.

The idea was taken from "A Primer on Bézier Curves".

Examples

Return two lists with the x and y values for the quadratic bezier curve that spans from (0,0) to (1,1) with the controll point (0,1);

  bezier([0,1,0],[0,1,1])

Return a cubic bezier curve with an added controll point at (0,1):

  bezier([0,0,0,1],[0,1,1,1])

Plotting

The number of coordinates is 100 by default, but can be modified with the range keyword.

  using Plots, Bezier

  plot(bezier([0,0.5,1],[0,1.8,0]))
  plot!(bezier([0,0,1,1],[0,1,-1,0.5]))
  plot!(bezier([0,0,1,1],[0,1,-1,0.5], 0:0.2:1))

example plot

  using Plots, Bezier

  m = [4 7 5 4 6 5 3; 3 4 -2 4 5 6 0]
  plot(bezier(m))
  scatter!(m[1,:],m[2,:])

example plot 2

About

a minimal implementation of bezier curves in julia

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%