-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_decoder.py
57 lines (52 loc) · 1.82 KB
/
train_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from src.trainer_decoder import (
LRS3Dataset,
Trainer,
)
import hydra
from omegaconf import DictConfig
from src.rfm_decoder_pytorch.cfm import CFM
from src.rfm_decoder_pytorch.dit import DiT
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--root', default="")
parser.add_argument('--epochs', default=200)
parser.add_argument('--batch_size', default=16)
parser.add_argument('--num_workers', default=10)
parser.add_argument('--output_dir', default='')
parser.add_argument('--lr', default=1e-4)
parser.add_argument('--log_step', default=500)
parser.add_argument('--val_step', default=2000)
parser.add_argument('--save_step', default=4000)
parser.add_argument('--ckpt', default='')
args = parser.parse_args()
return args
@hydra.main(config_path="configs/decoder", config_name="default.yaml")
def main(cfg: DictConfig):
args = parse_args()
train_dataset = LRS3Dataset(args.root, 'train')
val_dataset = LRS3Dataset(args.root, 'val')
dit = DiT(cfg.dit)
model = CFM(dit)
trainer = Trainer(
model=model,
num_warmup_steps=10000,
lr=args.lr,
grad_accumulation_steps = 1,
tensorboard_log_dir=args.output_dir,
checkpoint_path = os.path.join(args.output_dir, 'model.pt'),
log_file = os.path.join(args.output_dir, 'logs.txt')
)
trainer.train(train_dataset,
args.epochs,
args.batch_size,
val_dataset = val_dataset,
num_workers=args.num_workers,
log_step=args.log_step,
save_step=args.save_step,
val_step=args.val_step,
ckpt_path=args.ckpt)
if __name__ == '__main__':
main()