Skip to content

Latest commit

 

History

History
79 lines (62 loc) · 3.09 KB

README.md

File metadata and controls

79 lines (62 loc) · 3.09 KB

[NeurIPS 2022] Global Optimal K-Medoids Clustering of One Million Samples

This repository is the official implementation of Global Optimal K-Medoids Clustering of One Million Samples.

Requirements

  • Julia v1.6.1
  • CPLEX v20.1.0
  • openmpi v4.1.1
    • We also tested Microsoft MPI v10.1.12498.18. Please test other MPI implementations by yourself.
  • Julia Packages
    • CPLEX v0.7.8
    • CSV v0.9.11
    • Clustering v0.14.2
    • DataFrames v1.3.1
    • Distances v0.10.7
    • Distributions v0.25.37
    • JuMP v0.21.10
    • MPI v0.19.2
    • MathOptInterface v0.9.22
    • Metaheuristics v3.2.3
    • RDatasets v0.7.6
    • TimerOutputs v0.5.13
    • LinearAlgebra
    • Printf
    • Random
    • Statistics

File list

Source Files - src_mpi/

  • bb_functions.jl - branch and bound functions.

  • lb_functions.jl - lower bound calculation functions.

  • ub_functions.jl - upper bound calculation functions.

  • opt_functions.jl - local and global optimization functions.

  • data_process.jl - data preprocess and result evaluation and plotting functions.

  • branch.jl - branching functions.

  • Nodes.jl - Node struct of BB procedure.

  • probing.jl - functions for Probing bound tightening.

  • fbbt.jl - functions for Feasibility Based Bound Tightening.

Test Files - src_mpi/test

  • testing_real_mpi.jl - testing codes for datasets with LD, BB+Basic, and BB+LD methods.

  • testing_real_cpx.jl - testing codes for real-world data with CPLEX.

Evaluation

Please refer to line 9-16 of testing_*.jl file for the meaning of each input parameter

  • Dataset List
    • "iris" "seeds" "glass" "BM_FL" "UK_L" "HF_L" "Who_FL" "HCV_L" "Abs_FL" "TR_FL" "SGC_FL" "hemi" "pr2392" "TRR_FL" "AC_FL" "rds_cnt" "HTRU2_L" "GT_FL" "rds" "KEGG_FL" "urbanGB_L_10" "rng_agr" "urbanGB_L" "spnet3D" "retail" "retail_II" "syn_1E7_2_3" "USC1990"
  • Examples for the serial mode
julia src_mpi/test/test_real_mpi.jl 3 hemi BB+LD true fbbt_analytic 3 true true

julia src_mpi/test/test_real_mpi.jl 3 hemi LD true fbbt_analytic 3 true true

julia src_mpi/test/test_real_mpi.jl 3 hemi BB+Basic true fbbt_analytic 3 false false

julia src_mpi/test/test_real_cpx.jl 3 hemi
  • Examples for the parallel mode
mpiexec -n 4 julia src_mpi/test/test_real_mpi.jl 3 hemi BB+LD true fbbt_analytic 3 true true

Results

Here is the results of the hemi dataset with 1955 samples, 7 dimensions, and cluster number K=3. We executed all the experiments on a high-performance computing cluster, of which each node contains 40 Intel cores at 2.4 GHz and 202 GB RAM. Besides, the Heuristic results were recorded in the corresponding BB+LD logs.

Method UB Nodes Gap (%) Time (s)
Heuristic 9.91E+06 - - -
CPLEX 9.91E+06 1 ≤0.10 2044
LD 9.91E+06 1 12.45 3176
BB+Basic 9.91E+06 1.9E+6 4.32 4h
BB+LD 9.91E+06 63 ≤0.10 97