-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
586 lines (519 loc) · 31.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
from datetime import datetime
import torch
import torch.nn as nn
import os
from util.config import *
from architecture.generalizeable_dynamic_field import *
from architecture.encoders import *
from architecture.flow_feature_aggregation import *
from dataloader import *
from torch.utils.data import DataLoader
from tqdm import tqdm
from util.ray_helpers import *
from util.torch_utils import *
# from util.util import group_indices
from einops import *
from loss import *
import wandb
import copy
import torch
import torch.autograd as autograd
from torchviz import make_dot
from util import positional_encoding, entropy, L2_norm, normalize, L1_norm, mse2psnr
from architecture.mononerf import *
from torch.profiler import profile, record_function, ProfilerActivity
from util.render_utils import raw2outputs,batchify_rays,render_rays
from PIL import Image
def check_parameters_changed(model, prev_parameters):
current_parameters = copy.deepcopy(model.state_dict())
if prev_parameters is None:
return True
else:
for param_name in prev_parameters.keys():
if not torch.equal(prev_parameters[param_name], current_parameters[param_name]):
return True
return False
# PYZSHCOMPLETE_OK
def check_parameters_changed(model, prev_parameters):
current_parameters = copy.deepcopy(model.state_dict())
if prev_parameters is None:
return True
else:
for param_name in prev_parameters.keys():
if not torch.equal(prev_parameters[param_name], current_parameters[param_name]):
return True
return False
def calculate_blending_regularization(blending_weights, z_vals, disp, depth_epsilon, temperature=1e-5):
blending_weights = torch.sigmoid(blending_weights)
z_vals = 2 / (torch.clamp(z_vals, min=-1., max=1-1e-3) - 1)
z_vals = normalize(z_vals)
disp = normalize(disp).unsqueeze(-1)
lower_bound = disp - depth_epsilon
upper_bound = disp + depth_epsilon
bound = torch.logical_or((z_vals < lower_bound),
(z_vals > upper_bound)).float()
return L2_norm(blending_weights*bound)
def compute_depth_loss(dyn_depth, gt_depth):
dyn_depth_norm = normalize(dyn_depth)
gt_depth_norm = normalize(gt_depth)
return L2_norm(dyn_depth_norm - gt_depth_norm)
def compute_mask_flow_loss(blending_pre, blending_cur, blending_post):
blending_pre, blending_cur, blending_post = normalize(blending_pre), normalize(blending_cur), normalize(blending_post)
blending_pre, blending_cur, blending_post = torch.sigmoid(blending_pre), torch.sigmoid(blending_cur), torch.sigmoid(blending_post)
return L2_norm(blending_pre - blending_cur) + L2_norm(blending_cur - blending_post) + L2_norm(blending_pre - blending_post)
def calculate_losses(res, target, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask, disparity, pose, intrinsics, rays_d, criterion, config):
fwd_flow_loss = supervise_flows(res["trajectory"][:,1],res["trajectory"][:,2],res["output_full"][...,3],fwd_flow,fwd_flow_mask,pose[:,1],intrinsics[:,1],res["z_vals"],rays_d,criterion,forward_facing_scene=config.forward_facing)
bwd_flow_loss = supervise_flows(res["trajectory"][:,1],res["trajectory"][:,0],res["output_full"][...,3],bwd_flow,bwd_flow_mask,pose[:,1],intrinsics[:,1],res["z_vals"],rays_d,criterion,forward_facing_scene=config.forward_facing)
l_bw, l_curr, l_fw = criterion(res['rgb_pre'], target), criterion(res['rgb_cur'], target), criterion(res['rgb_post'], target)
L_corr = (l_curr + l_bw + l_fw)/3
rgb_loss = criterion(res['rgb_full'], target)
rgb_loss_psnr = mse2psnr(rgb_loss)
rgb_loss_corr_psnr = mse2psnr(L_corr)
rgb_pre_psnr, rgb_cur_psnr, rgb_post_psnr = mse2psnr(l_bw), mse2psnr(l_curr), mse2psnr(l_fw)
disparity_loss = compute_depth_loss(
res['depth_map_full'], -disparity)
sparse_loss = entropy(res['weights_full'])
slow_loss = L1_norm(fwd_flow) + L1_norm(bwd_flow)
loss = rgb_loss*config.loss.rgb_lambda + L_corr*config.loss.correlation_lambda + \
disparity_loss*config.loss.disparity_loss_lambda + \
sparse_loss*config.loss.sparse_loss_lambda + \
(fwd_flow_loss + bwd_flow_loss) * config.loss.nerf_flow_loss_lambda + \
slow_loss*config.loss.slow_loss_lambda
return {
"rgb_loss": rgb_loss.item(),
"L_corr": L_corr.item(),
"disparity_loss": disparity_loss.item(),
"sparse_loss": sparse_loss.item(),
"fwd_flow_loss": fwd_flow_loss.item(),
"bwd_flow_loss": bwd_flow_loss.item(),
"rgb_loss_psnr": rgb_loss_psnr.item(),
"rgb_loss_corr_psnr": rgb_loss_corr_psnr.item(),
"rgb_cur": l_curr.item(),
"rgb_pre": l_bw.item(),
"rgb_post": l_fw.item(),
"rgb_cur_psnr": rgb_cur_psnr.item(),
"rgb_pre_psnr": rgb_pre_psnr.item(),
"rgb_post_psnr": rgb_post_psnr.item(),
"total_loss": loss
}
def freeze_parameters(model):
for param in model.parameters():
param.requires_grad = False
def unfreeze_parameters(model):
for param in model.parameters():
param.requires_grad = True
def run_net(*args, **kwargs):
print("hey that's strange")
pass
def train_dynamic(run,models:dict,
train_loader,
optimizer_group:OptimizerGroup,
criterion,
config,
device):
torch.autograd.set_detect_anomaly(True)
dir_path = f"{config.checkpoint_dir}/{run.name}"
os.makedirs(dir_path, exist_ok=True)
# save config in checkpoint dir
with open(f"{dir_path}/config.json", "w") as f:
json.dump(config.to_dict(), f)
for model in models:
models[model].train()
total_batches = len(train_loader)*config.training.epochs
video_embedding = train_loader.dataset.get_video_embedding().to(device)
step = 0
with tqdm(total=total_batches, desc="Training") as pbar:
for _ in range(config.training.epochs):
for _, (index, rays_o, rays_d,pose,intrinsics, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask, target) in enumerate(train_loader):
loss = 0
target = target.to(device)
optimizer_group.zero_grad()
scene_index, image_indices, _,_ = index
tensors_to_device = [scene_index,image_indices,rays_o, rays_d,pose,intrinsics, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask]
scene_index,image_indices,rays_o, rays_d,pose,intrinsics, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask = map(lambda x: x.to(device), tensors_to_device)
if (masks==0).all():
continue
# if step % config.rendering.render_every == 0:
# for s in range(train_loader.dataset.n_scenes):
# t = np.random.randint(1, train_loader.dataset.n_images-1)
# results = batchify_rays(train_loader, s, t, models, video_embedding, config, chunk=config.rendering.chunk, verbose=True, perturb=0, N_samples=64)
# scene_name = train_loader.dataset.scene_names[s]
# rgb = results["rgb_full"].reshape(train_loader.dataset.h, train_loader.dataset.w, 3)
# gt_image = train_loader.dataset.images[s,t]*train_loader.dataset.images_masks[s,t]
# fwd_flow_img = train_loader.dataset.flows_fwd_images[s,t]*train_loader.dataset.images_masks[s,t]
# bwd_flow_img = train_loader.dataset.flows_bwd_images[s,t-1]*train_loader.dataset.images_masks[s,t]
# images = [rgb,gt_image.to(device=device).permute(1,2,0),fwd_flow_img.to(device=device).permute(1,2,0),bwd_flow_img.to(device=device).permute(1,2,0)]
# rgb_im = [Image.fromarray((image.cpu().numpy() * 255).astype(np.uint8)).convert('RGB') for image in images]
# os.makedirs(os.path.join("results",config.run_name), exist_ok=True)
# image_path_render = os.path.join("results",config.run_name,f'{scene_name}_{t}.png')
# image_path_gt = os.path.join("results",config.run_name,f'{scene_name}_{t}_gt.png')
# image_path_fwd_flow = os.path.join("results",config.run_name,f'{scene_name}_{t}_fwd_flow.png')
# image_path_bwd_flow = os.path.join("results",config.run_name,f'{scene_name}_{t}_bwd_flow.png')
# rgb_im[0].save(image_path_render)
# rgb_im[1].save(image_path_gt)
# rgb_im[2].save(image_path_fwd_flow)
# rgb_im[3].save(image_path_bwd_flow)
# wandb.log({"render vs gt and flows": [wandb.Image(im,caption=f"{scene_name} at {t}") for im in rgb_im]})
masks = masks.unsqueeze(1)
target = target*masks
f_temp = models['video_downsampler'](video_embedding)
res = render_rays(rays_o, rays_d, models, f_temp, pose, intrinsics, image_indices,scene_index,config, chunk=config.rendering.chunk, verbose=False, perturb=config.perturb, N_samples=64,all_parts=True,forward_facing_scene=config.forward_facing)
losses = calculate_losses(res, target, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask, disparity, pose, intrinsics, rays_d, criterion, config)
wandb.log(losses)
wandb.log({
"lr_general": optimizer_group.get_lr()[0],
"lr_ray_bender": optimizer_group.get_lr()[1],
"batch_loss": losses["total_loss"].item()
})
loss = losses['total_loss']
loss.backward()
losses['total_loss'] = loss.item()
optimizer_group.step()
optimizer_group.scheduler_step()
pbar.set_postfix(
{"rgb loss" : losses["rgb_loss_psnr"]})
step+=1
pbar.update()
if step %config.save_models_every == 0:
torch.save(models['ray_bending_estimator'].state_dict(), f"{dir_path}/ray_bending_estimator{step}.pt")
torch.save(models['video_downsampler'].state_dict(), f"{dir_path}/video_downsampler_{step}.pt")
torch.save(models['spatial_feature_aggregation'].state_dict(), f"{dir_path}/spatial_feature_aggregation_{step}.pt")
torch.save(models['spatial_encoder'].state_dict(), f"{dir_path}/spatial_encoder_{step}.pt")
torch.save(models['nerf'].state_dict(), f"{dir_path}/nerf_{step}.pt")
torch.save(models['ray_bending_estimator'].state_dict(), f"{dir_path}/ray_bending_estimator.pt")
torch.save(models['video_downsampler'].state_dict(), f"{dir_path}/video_downsampler.pt")
torch.save(models['spatial_feature_aggregation'].state_dict(), f"{dir_path}/spatial_feature_aggregation.pt")
torch.save(models['spatial_encoder'].state_dict(), f"{dir_path}/spatial_encoder.pt")
torch.save(models['nerf'].state_dict(), f"{dir_path}/nerf.pt")
wandb.save(f"{dir_path}/ray_bending_estimator.pt")
wandb.save(f"{dir_path}/video_downsampler.pt")
wandb.save(f"{dir_path}/spatial_feature_aggregation.pt")
wandb.save(f"{dir_path}/spatial_encoder.pt")
wandb.save(f"{dir_path}/nerf.pt")
run.finish()
def train(run,ray_bender:PointTrajectoryNoODE,
video_downsampler:VectorEncoder,
spatial_feature_aggregation: SpatialFeatureAggregation,
spatial_encoder,
nerf:NeRF,
static_field_NeRF:NeRF,
static_encoder,
train_loader,
optimizer_group:OptimizerGroup,
criterion,
config,
device):
torch.autograd.set_detect_anomaly(True)
# run = {}
# run["name"] = run
dir_path = f"{config.checkpoint_dir}/{config.run_name}"
os.makedirs(dir_path, exist_ok=True)
ray_bender.train()
video_downsampler.train()
spatial_feature_aggregation.train()
nerf.train()
static_field_NeRF.train()
static_encoder.train()
step = 0
freeze_parameters(nerf)
freeze_parameters(static_field_NeRF)
freeze_parameters(static_encoder)
freeze_parameters(spatial_feature_aggregation)
freeze_parameters(spatial_encoder)
freeze_parameters(ray_bender)
for epoch in range(config.training.epochs):
if epoch>=config.training.warmup_epochs:
unfreeze_parameters(nerf)
unfreeze_parameters(static_field_NeRF)
unfreeze_parameters(static_encoder)
unfreeze_parameters(spatial_feature_aggregation)
unfreeze_parameters(spatial_encoder)
with tqdm(total=len(train_loader), desc=f"Epoch {epoch+1}/{config.training.epochs}") as pbar:
for _, (index, rays_o, rays_d, bds, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask, target) in enumerate(tqdm(train_loader)):
loss = 0
target = target.to(device)
optimizer_group.zero_grad()
scene_index, image_indices, y,x = index
f_st = train_loader.dataset.image_encodings_static[scene_index, image_indices,:,y,x]
tensors_to_device = [scene_index,image_indices,rays_o, rays_d, bds, f_st, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask]
scene_index,image_indices,rays_o, rays_d, bds, f_st, masks, disparity, fwd_flow, fwd_flow_mask, bwd_flow, bwd_flow_mask = map(lambda x: x.to(device), tensors_to_device)
masks = masks.unsqueeze(-1)
image_indices = torch.cat(
[image_indices-1, image_indices, image_indices+1])
image_indices = torch.clamp(
image_indices, 0, train_loader.dataset.n_images-1)
scene_indices_three = torch.cat(
[scene_index, scene_index, scene_index])
pose, intrinsics = train_loader.dataset.get_pose_intrinsics(
scene_indices_three, image_indices)
image_indices = image_indices.reshape(3, rays_o.shape[0])
scene_indices_three = scene_indices_three.reshape(
3, rays_o.shape[0])
pose, intrinsics = pose.reshape(
3, rays_o.shape[0], 4, 4), intrinsics.reshape(3, rays_o.shape[0], 4, 4)
video_embedding = train_loader.dataset.get_video_embedding().to(device)
f_temp = video_downsampler(video_embedding)
near, far = bds[...,
0].unsqueeze(-1), bds[..., 1].unsqueeze(-1)
rays_o, rays_d = ndc_rays(train_loader.dataset.h, train_loader.dataset.w,
intrinsics[1, :, 0, 0], 1., rays_o, rays_d)
if (rays_o>100).any():
assert False, "rays_o is too big"
near, far = 0 * torch.ones_like(rays_d[...,:1]), 1 * torch.ones_like(rays_d[...,:1])
points, z_vals = get_points_along_rays(
rays_o, rays_d, near, far, False, config.perturb, config.architecture.n_samples)
trajectory = models['ray_bending_estimator'](
points, f_temp, image_indices[1], scene_index, time_span=config.time_span)
f_st = models['static_encoder'](f_st)
f_st = f_st.unsqueeze(1).expand(-1, points.shape[1], -1)
points_pos_enc = positional_encoding(
points.unsqueeze(-1)).reshape(points.shape[0], points.shape[1], -1)
time = image_indices[1].unsqueeze(1).unsqueeze(2).expand(-1,points.shape[1],-1).unsqueeze(-1)
time = positional_encoding(time,num_encodings = 5).reshape((points.shape[0], points.shape[1], -1))
points_encoded_static = torch.cat(
[points_pos_enc, f_st], dim=-1)
outputs_static = models['static_field_NeRF'](points_encoded_static)
outputs_static_background = outputs_static[..., :-1].clone().detach()
outputs_static_background[...,:3]=-1e10
rgb_static, *_ = raw2outputs(
outputs_static, z_vals, rays_d, white_bkgd=True)
rgb_static_masked = rgb_static * (1-masks)
target_static_masked = target * (1-masks)
if (masks==1).all():
rgb_loss_static = 0
else:
rgb_loss_static = criterion(rgb_static_masked, target_static_masked).sum()/((1-masks).sum())
# else:
trajectory_shape = trajectory.shape
pose = pose.unsqueeze(2).expand(-1,-1, config.architecture.n_samples, -1, -1)
intrinsics = intrinsics.unsqueeze(2).expand(-1,-1, config.architecture.n_samples, -1, -1)
trajectory_2d = project_trajectory_to_image_coords(
config, pose, intrinsics, trajectory, trajectory_shape)
f_sp, pre, cur, post = spatial_feature_aggregation(
trajectory_2d, config.image_size[0]//config.downscale, config.image_size[1]//config.downscale, (scene_indices_three, image_indices),train_loader.dataset.image_encodings)
f_temp = f_temp[scene_index].unsqueeze(1).expand(-1,f_sp.shape[1],-1)
f_dy, f_dy_pre, f_dy_cur, f_dy_post = torch.cat([f_temp, f_sp], dim=-1),\
torch.cat([f_temp, pre], dim=-1),\
torch.cat([f_temp, cur], dim=-1),\
torch.cat([f_temp, post], dim=-1)
points_encoded = torch.cat([points_pos_enc, f_dy,time], dim=-1)
points_encoded_pre = torch.cat(
[points_pos_enc, f_dy_pre,time], dim=-1)
points_encoded_cur = torch.cat(
[points_pos_enc, f_dy_cur,time], dim=-1)
points_encoded_post = torch.cat(
[points_pos_enc, f_dy_post,time], dim=-1)
outputs = nerf(points_encoded)
outputs_pre = nerf(points_encoded_pre)
outputs_cur = nerf(points_encoded_cur)
outputs_post = nerf(points_encoded_post)
raw_s = outputs_static[..., :4]
blending = outputs[..., 4]
rgb_pre,*_ = raw2outputs(outputs_pre,z_vals,rays_d)
rgb_cur,*_ = raw2outputs(outputs_cur,z_vals,rays_d)
rgb_post,*_ = raw2outputs(outputs_post,z_vals,rays_d)
rgb, depth_map_full, _, _, \
_, _, _, _, \
_, _, _, weights_d, \
dynamicness_map = raw2outputs_dynamic(
raw_s, outputs[..., :4], blending, z_vals, rays_d)
masks_denom = masks.sum()
if masks_denom == 0:
masks_denom = 1
dynamicness_loss = (torch.abs(dynamicness_map - masks.squeeze())).sum()/masks_denom
fwd_flow_loss = supervise_flows(trajectory[1],trajectory[2],outputs[...,3],fwd_flow,fwd_flow_mask,pose[2],intrinsics[2],z_vals,rays_d,torch.nn.MSELoss())
bwd_flow_loss = supervise_flows(trajectory[1],trajectory[0],outputs[...,3],bwd_flow,bwd_flow_mask,pose[0],intrinsics[0],z_vals,rays_d,torch.nn.MSELoss())
blending_reg = calculate_blending_regularization(
blending, z_vals, -disparity, config.depth_epsilon)
if (masks != 0).any():
target_foreground = target*masks
rgb_pre = rgb_pre*masks
rgb_cur = rgb_cur*masks
rgb_post = rgb_post * masks
l_bw, l_curr, l_fw = criterion(rgb_pre, target_foreground), criterion(rgb_cur, target_foreground), criterion(rgb_post, target_foreground)
l_bw, l_curr, l_fw = l_bw/(masks.sum()), l_curr/(masks.sum()), l_fw/(masks.sum())
else:
l_bw,l_curr,l_fw = torch.tensor(0),torch.tensor(0),torch.tensor(0)
L_corr = (l_curr + l_bw + l_fw)/3
rgb_loss = criterion(rgb, target).sum(dim=-1).mean()
# rgb_dynamic_loss = criterion(rgb_dynamic, target_foreground).sum(dim=-1).mean()
rgb_loss_psnr = mse2psnr(rgb_loss)
rgb_loss_static_psnr = mse2psnr(rgb_loss_static)
rgb_loss_corr_psnr = mse2psnr(L_corr)
# rgb_loss_dynamic_psnr = mse2psnr(rgb_dynamic_loss)
rgb_pre_psnr, rgb_cur_psnr, rgb_post_psnr = mse2psnr(l_bw), mse2psnr(l_curr), mse2psnr(l_fw)
mask_constraint = compute_mask_flow_loss(
outputs_pre[..., 4], outputs_cur[..., 4], outputs_post[..., 4])
disparity_loss = compute_depth_loss(
depth_map_full, -disparity)
blending = torch.sigmoid(blending)
sparse_loss = entropy(weights_d) + entropy(blending)
slow_loss = L1_norm(fwd_flow) + L1_norm(bwd_flow)
loss = rgb_loss*config.loss.rgb_lambda + L_corr*config.loss.correlation_lambda + \
rgb_loss_static*config.loss.rgb_static_lambda + disparity_loss*config.loss.disparity_loss_lambda + \
blending_reg*config.loss.blending_loss_lambda + mask_constraint*config.loss.mask_constraint_lambda + \
sparse_loss*config.loss.sparse_loss_lambda + \
(fwd_flow_loss + bwd_flow_loss) * config.loss.nerf_flow_loss_lambda + \
slow_loss*config.loss.slow_loss_lambda + \
dynamicness_loss*config.loss.dynamicness_lambda
lrs = optimizer_group.get_lr()
# loss = fwd_flow_loss + bwd_flow_loss + slow_loss
wandb.log({
"rgb_loss": rgb_loss.item(),
"L_corr": L_corr.item(),
"rgb_loss_static": rgb_loss_static.item(),
"disparity_loss": disparity_loss.item(),
"blending_reg": blending_reg.item(),
"mask_constraint": mask_constraint.item(),
"sparse_loss": sparse_loss.item(),
"fwd_flow_loss": fwd_flow_loss.item(),
"bwd_flow_loss": bwd_flow_loss.item(),
"rgb_loss_psnr": rgb_loss_psnr.item(),
"rgb_loss_static_psnr": rgb_loss_static_psnr.item(),
"rgb_loss_corr_psnr": rgb_loss_corr_psnr.item(),
# "rgb_dynamic_loss": rgb_dynamic_loss.item(),
# "rgb_loss_dynamic_psnr": rgb_loss_dynamic_psnr.item(),
"dynamicness_loss": dynamicness_loss.item(),
"rgb_cur": l_curr.item(),
"rgb_pre": l_bw.item(),
"rgb_post": l_fw.item(),
"rgb_cur_psnr": rgb_cur_psnr.item(),
"rgb_pre_psnr": rgb_pre_psnr.item(),
"rgb_post_psnr": rgb_post_psnr.item(),
"lr_general": lrs[0],
"lr_ray_bender": lrs[1],
"batch_loss": loss.item()
})
pbar.set_postfix(
{"fwd_flow_loss" : fwd_flow_loss.item(), "bwd_flow_loss" : bwd_flow_loss.item()})
loss.backward()
optimizer_group.step()
optimizer_group.scheduler_step()
pbar.update()
step += 1
if epoch %2 == 0:
torch.save(ray_bender.state_dict(), f"{dir_path}/ray_bender_{epoch}.pt")
torch.save(video_downsampler.state_dict(), f"{dir_path}/video_downsampler_{epoch}.pt")
torch.save(spatial_feature_aggregation.state_dict(), f"{dir_path}/spatial_feature_aggregation_{epoch}.pt")
torch.save(spatial_encoder.state_dict(), f"{dir_path}/spatial_encoder_{epoch}.pt")
torch.save(nerf.state_dict(), f"{dir_path}/nerf_{epoch}.pt")
# torch.save(static_field_NeRF.state_dict(), f"{dir_path}/static_field_NeRF_{epoch}.pt")
# torch.save(static_encoder.state_dict(), f"{dir_path}/static_encoder_{epoch}.pt")
torch.save(ray_bender.state_dict(), f"{dir_path}/ray_bender.pt")
torch.save(video_downsampler.state_dict(), f"{dir_path}/video_downsampler.pt")
torch.save(spatial_feature_aggregation.state_dict(), f"{dir_path}/spatial_feature_aggregation.pt")
torch.save(spatial_encoder.state_dict(), f"{dir_path}/spatial_encoder.pt")
torch.save(nerf.state_dict(), f"{dir_path}/nerf.pt")
# torch.save(static_field_NeRF.state_dict(), f"{dir_path}/static_field_NeRF.pt")
# torch.save(static_encoder.state_dict(), f"{dir_path}/static_encoder.pt")
wandb.save(f"{dir_path}/ray_bender.pt")
wandb.save(f"{dir_path}/video_downsampler.pt")
wandb.save(f"{dir_path}/spatial_feature_aggregation.pt")
wandb.save(f"{dir_path}/spatial_encoder.pt")
wandb.save(f"{dir_path}/nerf.pt")
# wandb.save(f"{dir_path}/static_field_NeRF.pt")
# wandb.save(f"{dir_path}/static_encoder.pt")
run.finish()
def create_dataset_and_networks(config):
dataset = CustomEncodingsImageDataset(config.data_folders,config,load_images=True)
networks = {}
video_embedding = dataset.get_video_embedding()
networks["video_downsampler"] = VectorEncoder(
video_embedding.shape[1], [256, 512], 256,normalize_output=False).to(device="cuda")
networks["spatial_encoder"] = VectorEncoder(256, [256, 512], 256).to(device="cuda")
networks["ray_bending_estimator"] = PointTrajectoryNoODE(3, 256).to(device="cuda")
networks["spatial_feature_aggregation"] = SpatialFeatureAggregation(dataset.image_encodings.shape[2],
256, dataset.image_encodings).to(device="cuda")
networks["nerf"] = NeRF(D=config.architecture.layer_count_dynamic,
skips=config.architecture.dynamic_layer_skips,input_ch=256*2+60+10)\
.to(device="cuda")
# networks["static_field_NeRF"] = NeRF(D=config.architecture.layer_count_static,skips=config.architecture.static_layer_skips,
# input_ch=256+60, dynamic=False).to(device="cuda")
# networks["static_encoder"] = VectorEncoder(512,[256],256,normalize_output=True).to(device="cuda")
return dataset,networks
def load_checkpoints(model_dict,checkpoint_dir):
for model_name in model_dict:
model_dict[model_name].load_state_dict(torch.load(os.path.join(checkpoint_dir,f"{model_name}.pt")))
return model_dict
def project_trajectory_to_image_coords(config, pose, intrinsics, trajectory, trajectory_shape):
# trajectory = rearrange(
# trajectory, 'time b n_samples xyz -> (time b) n_samples xyz')]
trajectory_world = NDC2world(trajectory,config.image_size[0]//config.downscale,config.image_size[1]//config.downscale, intrinsics[...,0,0].unsqueeze(-1))
trajectory_2d = project_3d_to_2d(trajectory_world, pose,intrinsics)
trajectory_2d = rearrange(trajectory_2d, '(time b n_samples) xy -> time b n_samples xy',
b=trajectory_shape[1], n_samples=config.architecture.n_samples)
return trajectory_2d
def main():
config = get_config()
# dataset = CustomEncodingsImageDataset(config.data_folders,config)
run = wandb.init(project="mononerf", config=config.to_dict())
if hasattr(config,"run_name"):
run.name = config.run_name
else:
run.name = 'mononerf-{}'.format(datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
config.run_name = run.name
dataset,models = create_dataset_and_networks(config)
# models = load_checkpoints(models,os.path.join(config.checkpoint_dir,"mononerf-2023-07-12_00-24-33"))
# models['ray_bending_estimator'].load_state_dict(torch.load("/home/yiftach/main/Research/MonoNeRF/checkpoints/mononerf-2023-07-12_11-25-56/ray_bending_estimator6000.pt"))
# checkpoint_dir = "/home/yiftach/main/Research/MonoNeRF/checkpoints/dutiful-frog-612"
dataloader = DataLoader(
dataset, batch_size=config.batch_size,num_workers=config.num_workers, shuffle=False)
grad_params = list(models['nerf'].parameters())
grad_params += list(models['spatial_feature_aggregation'].parameters())
grad_params += list(models['spatial_encoder'].parameters())
grad_params += list(models['video_downsampler'].parameters())
total_params = sum(p.numel() for p in grad_params)+sum(p.numel() for p in models['ray_bending_estimator'].parameters())
formatted_params = format_number(total_params)
print("---------------------------------------------------------------")
print("---------------------------------------------------------------")
print(" NETWORK PARAMETER COUNT ")
print("---------------------------------------------------------------")
print(" Total number of parameters: {:^20} ".format(
formatted_params))
print("---------------------------------------------------------------")
print("---------------------------------------------------------------")
part_percentages = []
for part in ['video_downsampler', 'spatial_encoder', 'ray_bending_estimator', 'spatial_feature_aggregation', 'nerf']:
part_params = sum(p.numel() for p in models[part].parameters())
part_percentage = (part_params / total_params) * 100
part_percentages.append((part, part_percentage))
part_percentages.sort(key=lambda x: x[1], reverse=True)
print("Percentage of parameters per part of the network:")
for part, percentage in part_percentages:
print("{:<25} {:>10.2f}%".format(part, percentage))
print("---------------------------------------------------------------")
print("---------------------------------------------------------------")
for param in grad_params:
if param.dim() > 1:
nn.init.xavier_uniform_(param)
else:
nn.init.zeros_(param)
optimizer_general = torch.optim.Adam([
{'params': grad_params, 'lr': config.training.lr},
])
optimizer_ray_bender = torch.optim.Adam([
{'params': models['ray_bending_estimator'].parameters(), 'lr': config.training.ray_bender_lr},
])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer_ray_bender,gamma=config.training.lr_gamma,milestones=config.training.lr_milestones)
opt_group = OptimizerGroup()
opt_group.add(optimizer_general)
opt_group.add(optimizer_ray_bender,scheduler)
if config.network_training_function in globals() and callable(globals()[config.network_training_function]):
eval(config.network_training_function)(run,models, dataloader, opt_group, torch.nn.MSELoss(), config, "cuda")
else:
raise Exception("Function {} not found in module {}".format(config.network_training_function,__name__))
# if config.training_mode=="static+dynamic":
# train(ray_bending_estimator, video_downsampler, spa, spatial_encoder, nerf, static_field_NeRF,
# static_encoder, dataloader, opt_group, torch.nn.MSELoss(reduction="none"), config, "cuda")
# elif config.training_mode=="dynamic":
# train_dynamic(run,models, dataloader, opt_group, torch.nn.MSELoss(), config, "cuda")
def format_number(number):
units = ["", "K", "M", "B"]
unit_index = 0
while number >= 1000 and unit_index < len(units) - 1:
number /= 1000
unit_index += 1
formatted_number = "{:,.2f}{}".format(number, units[unit_index])
return formatted_number
if __name__ == '__main__':
main()