-
Paper link: Predict then Propagate: Graph Neural Networks meet Personalized PageRank
-
Author's code repo:https://github.com/gasteigerjo/ppnp).
This example does not contain the implementation of PPNP.
Dataset | # Nodes | # Edges | # Classes |
---|---|---|---|
Cora | 2,708 | 10,556 | 7 |
Citeseer | 3,327 | 9,228 | 6 |
Pubmed | 19,717 | 88,651 | 3 |
cora-ml | 2810 | 7981 | 7 |
TL_BACKEND="paddle" python appnp_trainer.py --dataset cora --lr 0.15 --n_epoch 200 --hidden_dim 64 --drop_rate 0.4 --l2_coef 0.02 --iter_K 6 --self_loops 0
TL_BACKEND="paddle" python appnp_trainer.py --dataset pubmed --lr 0.2 --n_epoch 250 --hidden_dim 64 --drop_rate 0.6 --l2_coef 0.001 --iter_K 10 --self_loops 2
TL_BACKEND="paddle" python appnp_trainer.py --dataset citeseer --lr 0.03 --n_epoch 500 --hidden_dim 32 --alpha 0.1 --drop_rate 0.4 --l2_coef 2e-3 --iter_K 10 --self_loops 1
dataset | paper | our(pd) | our(tf) |
---|---|---|---|
cora | 82.9(±0.56) | 76.3(±0.45) | |
citeseer | 75.83(±0.27) | 70.8(±0.00) | 65.7(±0.15) |
pubmed | 79.73(±0.31) | 79.8(±0.67) | 75.5(±0) |
cora-ml | 85.29(±0.25) |