-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_swin.py
81 lines (64 loc) · 2.63 KB
/
main_swin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import math
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import transforms
from utils import GradCAM, show_cam_on_image, center_crop_img
from swin_model import swin_base_patch4_window7_224
class ResizeTransform:
def __init__(self, im_h: int, im_w: int):
self.height = self.feature_size(im_h)
self.width = self.feature_size(im_w)
@staticmethod
def feature_size(s):
s = math.ceil(s / 4) # PatchEmbed
s = math.ceil(s / 2) # PatchMerging1
s = math.ceil(s / 2) # PatchMerging2
s = math.ceil(s / 2) # PatchMerging3
return s
def __call__(self, x):
result = x.reshape(x.size(0),
self.height,
self.width,
x.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
# [batch_size, H, W, C] -> [batch, C, H, W]
result = result.permute(0, 3, 1, 2)
return result
def main():
# 注意输入的图片必须是32的整数倍
# 否则由于padding的原因会出现注意力飘逸的问题
img_size = 224
assert img_size % 32 == 0
model = swin_base_patch4_window7_224()
# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
weights_path = "./swin_base_patch4_window7_224.pth"
model.load_state_dict(torch.load(weights_path, map_location="cpu")["model"], strict=False)
target_layers = [model.norm]
data_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# load image
img_path = "both.png"
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
img = Image.open(img_path).convert('RGB')
img = np.array(img, dtype=np.uint8)
img = center_crop_img(img, img_size)
# [C, H, W]
img_tensor = data_transform(img)
# expand batch dimension
# [C, H, W] -> [N, C, H, W]
input_tensor = torch.unsqueeze(img_tensor, dim=0)
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False,
reshape_transform=ResizeTransform(im_h=img_size, im_w=img_size))
target_category = 281 # tabby, tabby cat
# target_category = 254 # pug, pug-dog
grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(img / 255., grayscale_cam, use_rgb=True)
plt.imshow(visualization)
plt.show()
if __name__ == '__main__':
main()