Skip to content

Latest commit

 

History

History
71 lines (45 loc) · 1.55 KB

README.md

File metadata and controls

71 lines (45 loc) · 1.55 KB

HeCo[KDD2021]

Paper: Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning

Code from author: https://github.com/liun-online/HeCo

How to run

Clone the Openhgnn-DGL

python main.py -m HeCo -d acm4HeCo -t node_classification -g 0 --use_best_config

Candidate dataset: acm4HeCo

If you do not have gpu, set -gpu -1.

candidate dataset

acm4HeCo

Performance

Node classification

Node classification acm4HeCo (Macro-F1 / Micro-F1 / AUC)
paper 89.04 / 88.71 / 96.55
OpenHGNN 88.66 / 88.35 / 96.90 (mean of 10 random seeds)

TrainerFlow: HeCo_trainer

The model is trained in unsupervisied node classification.

Hyper-parameter specific to the model

hidden_dim = 64
max_epoch = 10000
eva_lr = 0.05
eva_wd = 0
patience = 5
learning_rate = 0.0008
weight_decay = 0
tau = 0.8
feat_drop = 0.3
attn_drop = 0.5
sample_rate = author-7_subject-1
lam = 0.5

Best config can be found in best_config

Related API in DGL

dgl.sampling.sample_neighbors

GraphConv

GATConv

More

Contirbutor

Nian Liu, Tianyu Zhao[GAMMA LAB]

If you have any questions,

Submit an issue or email to [email protected].