forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSSL_trainer.py
260 lines (212 loc) · 12.7 KB
/
DSSL_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import dgl
import torch
import torch.nn.functional as F
from tqdm import tqdm
from ..utils.sampler import get_node_data_loader
from ..models import build_model
from . import BaseFlow, register_flow
from ..utils import EarlyStopping, to_hetero_idx, to_homo_feature, to_homo_idx
import math
from ..models.DSSL import LogisticRegression
import numpy as np
@register_flow("DSSL_trainer")
class DSSL_trainer(BaseFlow):
def __init__(self,args = None):
super(DSSL_trainer, self).__init__(args) # build task(dataset..)
self.args.category = self.task.dataset.category
self.category = self.args.category
self.num_classes = self.task.dataset.num_classes
if not hasattr(self.task.dataset, 'out_dim') or args.out_dim != self.num_classes:
self.logger.info('[NC Specific] Modify the out_dim with num_classes')
args.out_dim = self.num_classes
self.args.out_node_type = [self.category]
self.args.feature_dim = self.hg.ndata['feat'].shape[1]
# print(self.args.feature_dim)
self.model = build_model(self.model).build_model_from_args(self.args, self.hg).to(self.device)
self.optimizer = self.candidate_optimizer[args.optimizer](self.model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.rand_split == True or args.dataset in ['snap-patents','ogbn-proteins', 'wiki','Cora', 'PubMed','genius']:
self.train_idx, self.val_idx, self.test_idx = self.task.get_rand_split()
else:
self.train_idx, self.val_idx, self.test_idx = self.task.get_split()
self.split_idx_lst = [{'train':self.train_idx,'valid':self.val_idx,'test':self.test_idx}]
self.pred_idx = getattr(self.task.dataset, 'pred_idx', None)
self.labels = self.task.get_labels().to(self.device)
self.num_nodes_dict = {ntype: self.hg.num_nodes(ntype) for ntype in self.hg.ntypes}
self.to_homo_flag = getattr(self.model, 'to_homo_flag', False)
self.sampled_neighborhoods = self.sample_neighborhood(self.task.dataset, self.device, args)
def train(self):
print('MODEL:', self.model)
# print (split_idx_lst)
import datetime
time_now = datetime.datetime.now()
print('start training')
print(time_now)
meanAcc = 0
split_idx = self.split_idx_lst[0]
self.model.reset_parameters()
optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
best_val = float('-inf')
loss_lst = []
best_loss = float('inf')
for epoch in range(self.args.epochs): # args.epochs = 200
# pre-training
self.model.train()
batch_size = self.args.batch_size # args.batch_size = 1024
perm = torch.randperm(self.task.dataset.g.num_nodes()) # 随机打乱后获得的数字序列
epoch_loss = 0
for batch in range(0, self.task.dataset.g.num_nodes(), batch_size):
optimizer.zero_grad()
online_embedding = self.model.online_encoder(self.task.dataset)
target_embedding = self.model.target_encoder(self.task.dataset)
batch_idx = perm[batch:batch + batch_size] # 从图中随机取batch_size个结点的id
batch_idx = batch_idx.to(self.device)
batch_neighbor_index = self.sampled_neighborhoods[batch_idx] # 每个随机取的原结点取出有neighbor_max的邻居结点
batch_embedding = online_embedding[batch_idx].to(self.device) # 随机选的batch_size个结点的online_embedding
batch_embedding = F.normalize(batch_embedding, dim=-1, p=2) # 归一化 尺寸为 batch_size*dim=【1024,64】
# target_embedding 中拿出随机原结点的邻居节点
batch_neighbor_embedding = [target_embedding[i, :].unsqueeze(0) for i in batch_neighbor_index]
batch_neighbor_embedding = torch.cat(batch_neighbor_embedding, dim=0).to(self.device)
batch_neighbor_embedding = F.normalize(batch_neighbor_embedding, dim=-1, p=2)
# batch_size*neighbor_max*dim=【1024,5,64】
main_loss, context_loss, entropy_loss, k_node = self.model(batch_embedding, batch_neighbor_embedding)
tmp = F.one_hot(torch.argmax(k_node, dim=1), num_classes=self.args.cluster_num).type(
torch.FloatTensor).to(self.device)
batch_sum = (torch.reshape(torch.sum(tmp, 0), (-1, 1)))
if self.args.neg_alpha: # args.neg_alpha = 0
batch_neg_neighbor_index = sampled_neg_neighborhoods[batch_idx]
batch_neighbor_embedding = [target_embedding[i, :].unsqueeze(0) for i in
batch_neg_neighbor_index]
batch_neighbor_embedding = torch.cat(batch_neighbor_embedding, dim=0).to(device)
batch_neighbor_embedding = F.normalize(batch_neighbor_embedding, dim=-1, p=2)
main_neg_loss, tmp, tmp, tmp = model(batch_embedding, batch_neighbor_embedding)
loss = main_loss + args.gamma * (context_loss + entropy_loss) + main_neg_loss
else:
loss = main_loss + self.args.gamma * (context_loss + entropy_loss)
print("batch : {}, main_loss: {}, context_loss: {}, entropy_loss: {}".format(batch,
main_loss,
context_loss,
entropy_loss))
loss.backward()
optimizer.step()
self.model.update_moving_average()
epoch_loss = epoch_loss + loss
if epoch % 1 == 0:
self.model.eval()
for batch in range(0, self.task.dataset.g.num_nodes(), batch_size):
online_embedding = self.model.online_encoder(self.task.dataset)
target_embedding = self.model.target_encoder(self.task.dataset)
batch_idx = perm[batch:batch + batch_size]
batch_idx = batch_idx.to(self.device)
batch_neighbor_index = self.sampled_neighborhoods[batch_idx]
batch_target_embedding = target_embedding[batch_idx].to(self.device)
batch_embedding = online_embedding[batch_idx].to(self.device)
batch_neighbor_embedding = [target_embedding[i, :].unsqueeze(0) for i in batch_neighbor_index]
batch_neighbor_embedding = torch.cat(batch_neighbor_embedding, dim=0).to(self.device)
main_loss, context_loss, entropy_loss, k_node = self.model(batch_embedding, batch_neighbor_embedding)
tmp = F.one_hot(torch.argmax(k_node, dim=1), num_classes=self.args.cluster_num).type(
torch.FloatTensor).to(
self.device)
if batch == 0:
cluster = torch.matmul(batch_embedding.t(), tmp)
batch_sum = (torch.reshape(torch.sum(tmp, 0), (-1, 1)))
else:
cluster += torch.matmul(batch_embedding.t(), tmp)
batch_sum += (torch.reshape(torch.sum(tmp, 0), (-1, 1)))
cluster = F.normalize(cluster, dim=-1, p=2)
self.model.update_cluster(cluster, batch_sum)
print("epoch: {}, loss: {}".format(epoch, epoch_loss))
if epoch % 10 == 0:
time_epoch = datetime.datetime.now()
print("-------------------------------------------------------------------------------")
print('cost time')
timetmp = time_epoch - time_now
print(timetmp)
train_acc, dev_acc, test_acc = self.evaluate(self.model, self.task, split_idx)
print("train acc: {}, val acc: {}, test acc: {}".format(train_acc, dev_acc, test_acc))
print("-------------------------------------------------------------------------------")
if best_val < dev_acc:
best_val = dev_acc
besttest_acc = test_acc
meanAcc += besttest_acc
print("meanAcc: {}".format(meanAcc))
def _full_train_step(self):
pass
def _mini_train_step(self):
pass
def _full_test_step(self):
pass
def _mini_test_step(self):
pass
def sample_neighborhood(self,dataset, device, args):
neighbor_max = args.neighbor_max # args.neighbor_max = 5
adjacent_list = {}
# print(dataset.g)
# print(dataset.g.num_nodes())
# print(dataset.g.edges())
undirect_g = dataset.g
undirect_g = dgl.add_self_loop(undirect_g)
undirect_g = dgl.to_bidirected(undirect_g)
edge_index = undirect_g.edges()
# adjacent_matrix = g.adj().to_dense()
for i in range(0, dataset.g.num_nodes()):
# adjacent_list[i] = torch.tensor(tmp,dtype=torch.int64).to(device)
adjacent_list[i] = edge_index[1][edge_index[0] == i].to(device) # 邻接矩阵
for i in range(0, dataset.g.num_nodes()):
num_neighbor = adjacent_list[i].shape[0] # 第i个结点的邻居数量
if num_neighbor < neighbor_max:
more = math.ceil(neighbor_max / num_neighbor)
adjacent_list[i] = adjacent_list[i].repeat(1, more)[0, :neighbor_max] # 邻居数量不够使用重复填充
if num_neighbor > neighbor_max:
perm = torch.randperm(num_neighbor)
idx = perm[:neighbor_max]
adjacent_list[i] = adjacent_list[i][idx] # 邻居数量超过使用在原num_neighbor里随机取neighbor_max个
adjacent_list = list(adjacent_list.values())
adjacent_list = torch.vstack(adjacent_list)
return adjacent_list.to(device)
def evaluate(self, model, task, split_idx):
self.model.eval()
embedding = self.model.online_encoder(task.dataset)
embedding = embedding.detach()
emb_dim, num_class = embedding.shape[1], self.num_classes
train_accs, dev_accs, test_accs = [], [], []
for i in range(10):
train_idx = np.array(split_idx['train'].cpu())
valid_idx = np.array(split_idx['valid'].cpu())
test_idx = np.array(split_idx['test'].cpu())
task.labels = task.labels.type(torch.LongTensor).to(self.device)
task.labels = task.labels.unsqueeze(1)
train_label = task.labels[train_idx]
valid_label = task.labels[valid_idx]
test_label = task.labels[test_idx]
classifier = LogisticRegression(emb_dim, num_class).to(self.device)
optimizer_LR = torch.optim.AdamW(classifier.parameters(), lr=0.01, weight_decay=0.01)
for epoch in range(100): # epoch(LR) = 100
classifier.train()
logits, loss = classifier(embedding[train_idx, :], train_label.squeeze())
# print ("finetune epoch: {}, finetune loss: {}".format(epoch, loss))
optimizer_LR.zero_grad()
loss.backward()
optimizer_LR.step()
train_logits, _ = classifier(embedding[train_idx, :], train_label.squeeze())
dev_logits, _ = classifier(embedding[valid_idx, :], valid_label.squeeze())
test_logits, _ = classifier(embedding[test_idx, :], test_label.squeeze())
train_preds = torch.argmax(train_logits, dim=1)
dev_preds = torch.argmax(dev_logits, dim=1)
test_preds = torch.argmax(test_logits, dim=1)
train_acc = (torch.sum(train_preds == train_label.squeeze()).float() / train_label.squeeze().shape[
0]).detach().cpu().numpy()
dev_acc = (torch.sum(dev_preds == valid_label.squeeze()).float() / valid_label.squeeze().shape[
0]).detach().cpu().numpy()
test_acc = (torch.sum(test_preds == test_label.squeeze()).float() /
test_label.squeeze().shape[0]).detach().cpu().numpy()
train_accs.append(train_acc * 100)
dev_accs.append(dev_acc * 100)
test_accs.append(test_acc * 100)
train_accs = np.stack(train_accs)
dev_accs = np.stack(dev_accs)
test_accs = np.stack(test_accs)
train_acc, train_std = train_accs.mean(), train_accs.std()
dev_acc, dev_std = dev_accs.mean(), dev_accs.std()
test_acc, test_std = test_accs.mean(), test_accs.std()
return train_acc, dev_acc, test_acc