forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKTN_trainer.py
369 lines (346 loc) · 15.6 KB
/
KTN_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import dgl
import torch
from tqdm import tqdm
from ..models import build_model
from . import BaseFlow, register_flow
from ..utils import EarlyStopping, to_hetero_idx, to_homo_feature, to_homo_idx
from ..tasks import build_task
import warnings
import torch.nn as nn
import dgl.sparse as dglsp
from torch.utils.tensorboard import SummaryWriter
def process_category(labels: torch.tensor, num_classes: int) -> torch.tensor:
device = labels.device
if labels.shape[1] != num_classes:
processed_labels = torch.zeros(
(labels.shape[0], num_classes), dtype=torch.float, device=device
)
valid_labels = (labels >= 0).to(device)
num_indices = valid_labels.sum(dim=1)
weights = (1.0 / num_indices.clamp(min=1).unsqueeze(1)).float().to(device)
indices = (labels * valid_labels).to(torch.int64).to(device)
processed_labels.scatter_add_(1, indices, weights * valid_labels)
else:
processed_labels = labels.float().to(device)
return processed_labels
@register_flow("KTN_trainer")
class KTN_NodeClassification(BaseFlow):
r"""
Knowledge Transfer Learning flow.
`Link to the paper <https://arxiv.org/abs/2203.02018>`__
KTN is designed to tackle the issue of HGNNs learning different feature
extractors for different node types, which hinders direct transfer across types.
The core of KTN is a learnable graph convolution network :math:`t_{KTN}` that transforms
target node embeddings into the source embedding space:
.. math:: t_{KTN}(H^L_t) = A_{ts} H^L_t T_{ts}
Where :math:`H^L_t` is the L-th layer embeddings of target nodes, :math:`A_{ts}` is the adjacency
matrix from target to source types, and :math:`T_{ts}` is a learnable transformation matrix.
By minimizing the L2 distance between source embeddings :math:`H^L_s` and mapped target
embeddings :math:`t_{KTN}(H^L_t)`, :math:`T_{ts}` learns to project target nodes into source space.
At test time, the learned :math:`t_{KTN}` is simply applied to transform :math:`H^L_t`, which is
then fed into the source classifier for prediction.
"""
def __init__(self, args):
r"""
Attributes:
----------
source_type : str
Node type of source domain.
target_type : str
Node type of target domain.
task_type : str
Task type of dataset.
use_matching_loss : bool
Whether to use matching loss.
matching_w : nn.ModuleDict
Trainable transformation matrix for each meta path.
matching_path : int
Meta path for matching loss.
"""
if not hasattr(args, "use_matching_loss"):
args.use_matching_loss = True
if not hasattr(args, "feature_name"):
args.feature_name = "feat"
if not hasattr(args, "task_type"):
args.task_type = "L1"
if not hasattr(args, "source_type"):
args.source_type = "paper"
if not hasattr(args, "target_type"):
args.target_type = "author"
if not hasattr(args, "batch_size"):
args.batch_size = 3072
if not hasattr(args, "source_train_batch"):
args.source_train_batch = 200
if not hasattr(args, "source_test_batch"):
args.source_test_batch = 50
if not hasattr(args, "target_test_batch"):
args.target_test_batch = 50
if not hasattr(args, "matching_coeff"):
args.matching_coeff = 1
if not hasattr(args, "mini_batch_flag"):
args.mini_batch_flag = False
if not hasattr(args, "task_type"):
args.task_type = "L1"
super(KTN_NodeClassification, self).__init__(args)
self.args = args
self.max_epoch = args.max_epoch
self.device = args.device
self.source_type = args.source_type
self.target_type = args.target_type
self.dataset = self.task.dataset
self.dataset.to(self.device)
self.use_matching_loss = args.use_matching_loss
self.classifier = self.task.classifier.to(self.device)
self.task_type = args.task_type
self.num_layers = args.num_layers
self.g = self.dataset.g.to(self.device)
self.batch_size = args.batch_size
self.source_train_batch = args.source_train_batch
self.source_test_batch = args.source_test_batch
self.target_test_batch = args.target_test_batch
self.feature = self.dataset.get_feature()
(
self.source_train_idx,
self.source_val_idx,
self.source_test_idx,
) = self.task.get_split(self.source_type, self.device)
(
self.target_train_idx,
self.target_val_idx,
self.target_test_idx,
) = self.task.get_split(self.target_type, self.device)
self.source_labels = self.dataset.get_labels(self.task_type, self.source_type)
self.target_labels = self.dataset.get_labels(self.task_type, self.target_type)
self.matching_coeff = args.matching_coeff
self.args.in_dim = self.feature[self.source_type].shape[1]
if not hasattr(self.args, "out_dim"):
self.args.out_dim = self.args.hid_dim
self.model_name = args.model
self.model = (
build_model(self.model)
.build_model_from_args(self.args, self.g)
.to(self.device)
)
matching_w = {}
self.label_dim = self.dataset.dims[self.task_type].item()
abbrev = self.target_type[0].upper() + "-" + self.source_type[0].upper()
self.matching_path = self.dataset.meta_paths_dict[abbrev]
for matching_id, relation in enumerate(self.matching_path):
matching_w[str(matching_id) + relation[1]] = nn.Linear(
self.args.out_dim, self.args.out_dim
).to(self.device)
self.matching_w = nn.ModuleDict(matching_w)
for matching_id in self.matching_w.keys():
nn.init.xavier_uniform_(self.matching_w[matching_id].weight)
self.matching_loss = nn.MSELoss()
self.optimizer = torch.optim.Adam(
[
{"params": self.model.parameters()},
{"params": self.matching_w.parameters()},
{"params": self.classifier.parameters()},
],
lr=self.args.lr,
)
self.logger.info("Source domain: {} | Target domain: {} | Task type: {}".format(self.source_type, self.target_type, self.task_type))
self.writer = SummaryWriter(f"./openhgnn/output/KTN/")
def train(self):
self.preprocess()
stopper = EarlyStopping(self.patience)
epoch_iter = tqdm(range(self.max_epoch))
for epoch in epoch_iter:
if self.args.mini_batch_flag:
train_loss, matching_loss = self._mini_train_step()
else:
train_loss, matching_loss = self._full_train_step()
loss = train_loss + self.matching_coeff * matching_loss
if epoch % self.evaluate_interval == 0:
if self.args.mini_batch_flag:
acc = self._mini_test_step()
else:
acc = self._full_test_step()
self.writer.add_scalar("source_acc", acc[0], epoch)
self.writer.add_scalar("target_acc", acc[1], epoch)
self.writer.add_scalar("ktn_acc", acc[2], epoch)
self.logger.train_info(
"Epoch {:d} | Train Loss {:.4f} | Matching Loss {:.4f} | Source Acc {:.4f} | Target Acc {:.4f} | KTN Acc {:.4f}".format(
epoch, train_loss, matching_loss, acc[0], acc[1], acc[2]
)
)
early_stop = stopper.loss_step(loss, self.model)
if early_stop:
self.logger.train_info("Early Stop!\tEpoch:" + str(epoch))
break
stopper.load_model(self.model)
self.writer.close()
def _full_train_step(self):
self.model.train()
self.matching_w.train()
self.classifier.train()
self.g = self.g.to(self.device)
h_dict = self.feature
h_dict = self.model(self.g, h_dict)
logits = h_dict[self.source_type][self.source_train_idx]
pred_y = self.classifier(logits)
training_loss = self.loss_fn(pred_y, self.train_labels)
h_S = h_dict[self.source_type]
h_T = h_dict[self.target_type]
matching_loss = self.get_matching_loss(h_S, h_T, self.g)
loss = training_loss + self.matching_coeff * matching_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return training_loss.item(), matching_loss.item()
def _mini_train_step(
self,
):
self.model.train()
self.matching_w.train()
self.classifier.train()
loader_tqdm = tqdm(self.source_train_loader, ncols=120)
batch_count = len(self.source_train_loader)
if batch_count > self.source_train_batch:
batch_count = self.source_train_batch
all_loss = 0.0
all_matching_loss = 0.0
for i, (input_nodes, seeds, blocks) in enumerate(loader_tqdm):
if i == self.source_train_batch:
break
sg = dgl.node_subgraph(self.g, input_nodes).to(self.device)
h = {}
for ntype in input_nodes.keys():
h[ntype] = self.feature[ntype][input_nodes[ntype]].to(self.device)
lbl = self.source_labels[input_nodes[self.source_type]].to(self.device)
lbl = process_category(lbl, self.label_dim).to(self.device)
h = self.model(sg, h)
logits = self.classifier(h[self.source_type])
loss = self.loss_fn(logits, lbl)
h_S = h[self.source_type]
h_T = h[self.target_type]
matching_loss = self.get_matching_loss(h_S, h_T, sg)
all_loss += loss.item()
all_matching_loss += matching_loss.item()
loss = loss + self.matching_coeff * matching_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
all_loss = all_loss / batch_count
all_matching_loss = all_matching_loss / batch_count
return all_loss, all_matching_loss
def get_matching_loss(self, h_S, h_T, hg):
loss = torch.tensor([0.0], requires_grad=True).to(self.device)
if self.use_matching_loss == False:
return loss
h_Z = h_T
for matching_id, edge in enumerate(self.matching_path):
h_Z = self.matching_w[str(matching_id) + edge[1]](h_Z)
adj = hg.adj(etype=edge).transpose()
h_Z = dglsp.spmm(adj, h_Z)
loss = loss + self.matching_loss(h_S, h_Z)
return loss
def preprocess(self):
if self.args.mini_batch_flag:
sampler = dgl.dataloading.NeighborSampler(self.num_layers * [1])
self.source_train_loader = dgl.dataloading.DataLoader(
self.g,
{self.source_type: self.source_train_idx},
sampler,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
)
self.source_test_loader = dgl.dataloading.DataLoader(
self.g,
{self.source_type: self.source_test_idx},
sampler,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
)
self.target_test_loader = dgl.dataloading.DataLoader(
self.g,
{self.target_type: self.target_test_idx},
sampler,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
)
else:
self.train_labels = process_category(
self.source_labels[self.source_train_idx], self.label_dim
)
self.source_test_labels = process_category(
self.source_labels[self.source_test_idx], self.label_dim
)
self.target_test_labels = process_category(
self.target_labels[self.target_test_idx], self.label_dim
)
return
def _full_test_step(self):
self.model.eval()
self.classifier.eval()
self.matching_w.eval()
with torch.no_grad():
h_dict = self.feature
logits = self.model(self.g, h_dict)
source_y = self.classifier(logits[self.source_type])[self.source_test_idx]
origin_target_y = self.classifier(logits[self.target_type])[
self.target_test_idx
]
ktn_logits = logits[self.target_type]
for matching_id, edge in enumerate(self.matching_path):
ktn_logits = self.matching_w[str(matching_id) + edge[1]](ktn_logits)
ktn_target_y = self.classifier(ktn_logits)[self.target_test_idx]
source_acc = self.task.evaluate(source_y, self.source_test_labels)
target_acc = self.task.evaluate(origin_target_y, self.target_test_labels)
ktn_acc = self.task.evaluate(ktn_target_y, self.target_test_labels)
return source_acc, target_acc, ktn_acc
def _mini_test_step(self):
self.model.eval()
self.classifier.eval()
self.matching_w.eval()
with torch.no_grad():
source_loader_tqdm = tqdm(self.source_test_loader, ncols=120)
source_acc = 0
source_batch_count = len(self.source_test_loader)
if source_batch_count > self.source_test_batch:
source_batch_count = self.source_test_batch
for i, (input_nodes, seeds, blocks) in enumerate(source_loader_tqdm):
if i == self.source_test_batch:
break
h = {}
for ntype in input_nodes.keys():
h[ntype] = self.feature[ntype][input_nodes[ntype]].to(self.device)
lbl = self.source_labels[seeds[self.source_type]].to(self.device)
lbl = process_category(lbl, self.label_dim).to(self.device)
h = self.model(blocks, h)
logits = self.classifier(h[self.source_type])
acc = self.task.evaluate(logits, lbl)
source_acc += acc
source_acc /= source_batch_count
target_loader_tqdm = tqdm(self.target_test_loader, ncols=120)
target_batch_count = len(self.target_test_loader)
if target_batch_count > self.target_test_batch:
target_batch_count = self.target_test_batch
target_acc = 0
ktn_acc = 0
for i, (input_nodes, seeds, blocks) in enumerate(target_loader_tqdm):
if i == self.target_test_batch:
break
h = {}
for ntype in input_nodes.keys():
h[ntype] = self.feature[ntype][input_nodes[ntype]].to(self.device)
lbl = self.target_labels[seeds[self.target_type]].to(self.device)
lbl = process_category(lbl, self.label_dim)
h = self.model(blocks, h)
logits = self.classifier(h[self.target_type])
origin_acc = self.task.evaluate(logits, lbl)
target_acc += origin_acc
target_h = h[self.target_type]
for matching_id, edge in enumerate(self.matching_path):
target_h = self.matching_w[str(matching_id) + edge[1]](target_h)
ktn_logits = self.classifier(target_h)
_ktn_acc = self.task.evaluate(ktn_logits, lbl)
ktn_acc += _ktn_acc
target_acc /= target_batch_count
ktn_acc /= target_batch_count
return source_acc, target_acc, ktn_acc