forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLTE_trainer.py
329 lines (288 loc) · 13.2 KB
/
LTE_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from . import BaseFlow, register_flow
from ..models import build_model
@register_flow("LTE_trainer")
class LTETrainer(BaseFlow):
def __init__(self, args):
print("2")
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device('cuda:0')
self.device = device
args.device= device
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
runner = Runner(args)
runner.fit()
def train(self):
print("1")
import os
import argparse
import time
import logging
from pprint import pprint
import numpy as np
import random
from pathlib import Path
import torch
from torch.utils.data import DataLoader
import dgl
from ..utils.lte_knowledge_graph import load_data
from ..utils.lte_data_set import TrainDataset, TestDataset
from ..utils.lte_process_data import process
class Runner(object):
def __init__(self, params):
params.embed_dim=None
params.r_ops=""
self.p = params
self.prj_path = Path(__file__).parent.resolve()
self.p.dataset_name=self.p.data
self.data = load_data(self.p.dataset_name)
self.num_ent, self.train_data, self.valid_data, self.test_data, self.num_rels = self.data.num_nodes, self.data.train, self.data.valid, self.data.test, self.data.num_rels
self.triplets = process({'train': self.train_data, 'valid': self.valid_data, 'test': self.test_data},
self.num_rels)
self.p.embed_dim = self.p.k_w * \
self.p.k_h if self.p.embed_dim is None else self.p.embed_dim # output dim of gnn
self.data_iter = self.get_data_iter()
if self.p.gpu >= 0:
self.g = self.build_graph().to(self.p.device)
else:
self.g = self.build_graph()
self.edge_type, self.edge_norm = self.get_edge_dir_and_norm()
self.model = self.get_model()
self.optimizer = torch.optim.Adam(
self.model.parameters(), lr=self.p.lr, weight_decay=self.p.l2)
self.best_val_mrr, self.best_epoch, self.best_val_results = 0., 0., {}
os.makedirs('./logs', exist_ok=True)
self.logger = logging.getLogger(__name__)
pprint(vars(self.p))
def fit(self):
save_root = self.prj_path / 'checkpoints'
if not save_root.exists():
save_root.mkdir()
save_path = save_root / (self.p.name + '.pt')
if self.p.restore:
self.load_model(save_path)
self.logger.info('Successfully Loaded previous model')
for epoch in range(self.p.max_epochs):
start_time = time.time()
train_loss = self.train()
val_results = self.evaluate('valid')
if val_results['mrr'] > self.best_val_mrr:
self.best_val_results = val_results
self.best_val_mrr = val_results['mrr']
self.best_epoch = epoch
# self.save_model(save_path)
print(f"hits@1 = {val_results['hits@1']:.5}")
print(f"hits@3 = {val_results['hits@3']:.5}")
print(f"hits@10 = {val_results['hits@10']:.5}")
print(
f"[Epoch {epoch}]: Training Loss: {train_loss:.5}, Valid MRR: {val_results['mrr']:.5}, Best Valid MRR: {self.best_val_mrr:.5}, Cost: {time.time() - start_time:.2f}s")
self.logger.info(
f"[Epoch {epoch}]: Training Loss: {train_loss:.5}, Valid MRR: {val_results['mrr']:.5}, Best Valid MRR: {self.best_val_mrr:.5}, Cost: {time.time() - start_time:.2f}s")
self.logger.info(vars(self.p))
# self.load_model(save_path)
self.logger.info(
f'Loading best model in {self.best_epoch} epoch, Evaluating on Test data')
start = time.time()
test_results = self.evaluate('test')
end = time.time()
self.logger.info(
f"MRR: Tail {test_results['left_mrr']:.5}, Head {test_results['right_mrr']:.5}, Avg {test_results['mrr']:.5}")
self.logger.info(
f"MR: Tail {test_results['left_mr']:.5}, Head {test_results['right_mr']:.5}, Avg {test_results['mr']:.5}")
self.logger.info(f"hits@1 = {test_results['hits@1']:.5}")
self.logger.info(f"hits@3 = {test_results['hits@3']:.5}")
self.logger.info(f"hits@10 = {test_results['hits@10']:.5}")
self.logger.info("time ={}".format(end-start))
def train(self):
self.model.train()
losses = []
train_iter = self.data_iter['train']
for step, (triplets, labels) in enumerate(train_iter):
if self.p.gpu >= 0:
triplets, labels = triplets.to(self.p.device), labels.to(self.p.device)
subj, rel = triplets[:, 0], triplets[:, 1]
# print(subj)
pred = self.model(self.g, subj, rel) # [batch_size, num_ent]
loss = self.model.calc_loss(pred, labels)
# print(loss)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
losses.append(loss.item())
loss = np.mean(losses)
return loss
def evaluate(self, split):
"""
Function to evaluate the model on validation or test set
:param split: valid or test, set which data-set to evaluate on
:return: results['mr']: Average of ranks_left and ranks_right
results['mrr']: Mean Reciprocal Rank
results['hits@k']: Probability of getting the correct prediction in top-k ranks based on predicted score
results['left_mrr'], results['left_mr'], results['right_mrr'], results['right_mr']
results['left_hits@k'], results['right_hits@k']
"""
def get_combined_results(left, right):
results = dict()
assert left['count'] == right['count']
count = float(left['count'])
results['left_mr'] = round(left['mr'] / count, 5)
results['left_mrr'] = round(left['mrr'] / count, 5)
results['right_mr'] = round(right['mr'] / count, 5)
results['right_mrr'] = round(right['mrr'] / count, 5)
results['mr'] = round((left['mr'] + right['mr']) / (2 * count), 5)
results['mrr'] = round(
(left['mrr'] + right['mrr']) / (2 * count), 5)
for k in [1, 3, 10]:
results[f'left_hits@{k}'] = round(left[f'hits@{k}'] / count, 5)
results[f'right_hits@{k}'] = round(
right[f'hits@{k}'] / count, 5)
results[f'hits@{k}'] = round(
(results[f'left_hits@{k}'] + results[f'right_hits@{k}']) / 2, 5)
return results
self.model.eval()
left_result = self.predict(split, 'tail')
right_result = self.predict(split, 'head')
res = get_combined_results(left_result, right_result)
return res
def predict(self, split='valid', mode='tail'):
"""
Function to run model evaluation for a given mode
:param split: valid or test, set which data-set to evaluate on
:param mode: head or tail
:return: results['mr']: Sum of ranks
results['mrr']: Sum of Reciprocal Rank
results['hits@k']: counts of getting the correct prediction in top-k ranks based on predicted score
results['count']: number of total predictions
"""
with torch.no_grad():
results = dict()
test_iter = self.data_iter[f'{split}_{mode}']
for step, (triplets, labels) in enumerate(test_iter):
triplets, labels = triplets.to(self.p.device), labels.to(self.p.device)
subj, rel, obj = triplets[:, 0], triplets[:, 1], triplets[:, 2]
pred = self.model(self.g, subj, rel)
b_range = torch.arange(pred.shape[0], device=self.p.device)
# [batch_size, 1], get the predictive score of obj
target_pred = pred[b_range, obj]
# label=>-1000000, not label=>pred, filter out other objects with same sub&rel pair
pred = torch.where(
labels.bool(), -torch.ones_like(pred) * 10000000, pred)
# copy predictive score of obj to new pred
pred[b_range, obj] = target_pred
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1, descending=True), dim=1, descending=False)[
b_range, obj] # get the rank of each (sub, rel, obj)
ranks = ranks.float()
results['count'] = torch.numel(
ranks) + results.get('count', 0) # number of predictions
results['mr'] = torch.sum(ranks).item() + results.get('mr', 0)
results['mrr'] = torch.sum(
1.0 / ranks).item() + results.get('mrr', 0)
for k in [1, 3, 10]:
results[f'hits@{k}'] = torch.numel(
ranks[ranks <= k]) + results.get(f'hits@{k}', 0)
return results
def save_model(self, path):
"""
Function to save a model. It saves the model parameters, best validation scores,
best epoch corresponding to best validation, state of the optimizer and all arguments for the run.
:param path: path where the model is saved
:return:
"""
state = {
'model': self.model.state_dict(),
'best_val': self.best_val_results,
'best_epoch': self.best_epoch,
'optimizer': self.optimizer.state_dict(),
'args': vars(self.p)
}
torch.save(state, path)
def load_model(self, path):
"""
Function to load a saved model
:param path: path where model is loaded
:return:
"""
state = torch.load(path)
self.best_val_results = state['best_val']
self.best_val_mrr = self.best_val_results['mrr']
self.best_epoch = state['best_epoch']
self.model.load_state_dict(state['model'])
self.optimizer.load_state_dict(state['optimizer'])
def build_graph(self):
g = dgl.DGLGraph()
g.add_nodes(self.num_ent)
if not self.p.rat:
g.add_edges(self.train_data[:, 0], self.train_data[:, 2])
g.add_edges(self.train_data[:, 2], self.train_data[:, 0])
else:
if self.p.ss > 0:
sampleSize = self.p.ss
else:
sampleSize = self.num_ent - 1
g.add_edges(self.train_data[:, 0], np.random.randint(
low=0, high=sampleSize, size=self.train_data[:, 2].shape))
g.add_edges(self.train_data[:, 2], np.random.randint(
low=0, high=sampleSize, size=self.train_data[:, 0].shape))
return g
def get_data_iter(self):
"""
get data loader for train, valid and test section
:return: dict
"""
def get_data_loader(dataset_class, split):
return DataLoader(
dataset_class(self.triplets[split], self.num_ent, self.p),
batch_size=self.p.batch_size,
shuffle=True,
num_workers=self.p.num_workers
)
return {
'train': get_data_loader(TrainDataset, 'train'),
'valid_head': get_data_loader(TestDataset, 'valid_head'),
'valid_tail': get_data_loader(TestDataset, 'valid_tail'),
'test_head': get_data_loader(TestDataset, 'test_head'),
'test_tail': get_data_loader(TestDataset, 'test_tail')
}
def get_edge_dir_and_norm(self):
"""
:return: edge_type: indicates type of each edge: [E]
"""
in_deg = self.g.in_degrees(range(self.g.number_of_nodes())).float()
norm = in_deg ** -0.5
norm[torch.isinf(norm).bool()] = 0
self.g.ndata['xxx'] = norm
self.g.apply_edges(
lambda edges: {'xxx': edges.dst['xxx'] * edges.src['xxx']})
if self.p.gpu >= 0:
norm = self.g.edata.pop('xxx').squeeze().to(self.p.device)
edge_type = torch.tensor(np.concatenate(
[self.train_data[:, 1], self.train_data[:, 1] + self.num_rels])).to(self.p.device)
else:
norm = self.g.edata.pop('xxx').squeeze()
edge_type = torch.tensor(np.concatenate(
[self.train_data[:, 1], self.train_data[:, 1] + self.num_rels]))
return edge_type, norm
def get_model(self):
args = self.p
args.num_ents = self.num_ent
args.num_rels= self.num_rels
if self.p.n_layer > 0:
if self.p.score_func.lower() == 'transe':
model = build_model(args.model_name_GCN).build_model_from_args(
args).model
# model = GCN_TransE(args)
else:
raise KeyError(
f'score function {self.p.score_func} not recognized.')
else:
if self.p.score_func.lower() == 'transe':
model = build_model(args.model_name).build_model_from_args(
args).model
# model = TransE(self.num_ent, self.num_rels, params=self.p)
else:
raise NotImplementedError
if self.p.gpu >= 0:
model.to(self.p.device)
return model