forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeHGNN_trainer.py
465 lines (406 loc) · 21.1 KB
/
SeHGNN_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import os
import gc
import time
import uuid
import argparse
import datetime
import numpy as np
import torch
import torch.nn.functional as F
import os
import sys
import gc
import random
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.sparse as sp
from sklearn.metrics import f1_score
from tqdm import tqdm
from ogb.nodeproppred import DglNodePropPredDataset, Evaluator
from openhgnn.models import build_model
from . import BaseFlow, register_flow
from ..tasks import build_task
import functools
from contextlib import closing
import multiprocessing as mp
from multiprocessing import Pool
from tqdm import tqdm
from ..tasks import NodeClassification
@register_flow("SeHGNN_trainer")
class SeHGNNtrainer(BaseFlow):
def __init__(self,args):
super(SeHGNNtrainer, self).__init__(args)
args.stages = [int(item.strip()) for item in args.stages.split(',')]
self.args = args
self.flow = NodeClassification(args)
def train(self):
args = self.args
if args.seed > 0:
self.set_random_seed(args.seed)
num_nodes = self.flow.dataset.SeHGNN_g.num_nodes("P")
n_classes = int(self.flow.labels.max()) + 1
evaluator = self.flow.get_evaluator("acc")
# =======
# rearange node idx (for feats & labels)
# =======
train_node_nums = len(self.flow.train_idx)
valid_node_nums = len(self.flow.val_idx)
test_node_nums = len(self.flow.test_idx)
trainval_point = train_node_nums
valtest_point = trainval_point + valid_node_nums
total_num_nodes = len(self.flow.train_idx) + len(self.flow.val_idx) + len(self.flow.test_idx)
init2sort = torch.cat([self.flow.train_idx, self.flow.val_idx, self.flow.test_idx])
sort2init = torch.argsort(init2sort)
assert torch.all(self.flow.labels[init2sort][sort2init] == self.flow.labels)
labels = self.flow.labels[init2sort]
# =======
# features propagate alongside the metapath
# =======
tgt_type = 'P'
max_hops = args.num_hops + 1
# compute k-hop feature
self.flow.dataset.SeHGNN_g = self.hg_propagate(self.flow.dataset.SeHGNN_g, tgt_type, args.num_hops, max_hops, echo=False)
feats = {}
keys = list(self.flow.dataset.SeHGNN_g.nodes[tgt_type].data.keys())
print(f'Involved feat keys {keys}')
for k in keys:
feats[k] = self.flow.dataset.SeHGNN_g.nodes[tgt_type].data.pop(k)
self.flow.dataset.SeHGNN_g = self.clear_hg(self.flow.dataset.SeHGNN_g, echo=False)
feats = {k: v[init2sort] for k, v in feats.items()}
gc.collect()
all_loader = torch.utils.data.DataLoader(
torch.arange(num_nodes), batch_size=args.batch_size, shuffle=False, drop_last=False)
checkpt_folder = f'./openhgnn/output/SeHGNN/{args.dataset}/'
if not os.path.exists(checkpt_folder):
os.makedirs(checkpt_folder)
if args.amp:
scalar = torch.cuda.amp.GradScaler()
else:
scalar = None
device = "cuda:{}".format(args.gpu) if not args.cpu else 'cpu'
labels_cuda = labels.long().to(device)
checkpt_file = checkpt_folder + uuid.uuid4().hex
print(checkpt_file)
for stage in range(args.start_stage, len(args.stages)):
epochs = args.stages[stage]
if len(args.reload):
pt_path = f'./openhgnn/output/SeHGNN/ogbn-mag/{args.reload}_{stage-1}.pt'
assert os.path.exists(pt_path)
print(f'Reload raw_preds from {pt_path}', flush=True)
raw_preds = torch.load(pt_path, map_location='cpu')
# =======
# Expand training set & train loader
# =======
if stage > 0:
preds = raw_preds.argmax(dim=-1)
predict_prob = raw_preds.softmax(dim=1)
train_acc = evaluator(preds[:trainval_point], labels[:trainval_point])
val_acc = evaluator(preds[trainval_point:valtest_point], labels[trainval_point:valtest_point])
test_acc = evaluator(preds[valtest_point:total_num_nodes], labels[valtest_point:total_num_nodes])
print(f'Stage {stage-1} history model:\n\t' \
+ f'Train acc {train_acc*100:.4f} Val acc {val_acc*100:.4f} Test acc {test_acc*100:.4f}')
confident_mask = predict_prob.max(1)[0] > args.threshold
val_enhance_offset = torch.where(confident_mask[trainval_point:valtest_point])[0]
test_enhance_offset = torch.where(confident_mask[valtest_point:total_num_nodes])[0]
val_enhance_nid = val_enhance_offset + trainval_point
test_enhance_nid = test_enhance_offset + valtest_point
enhance_nid = torch.cat((val_enhance_nid, test_enhance_nid))
print(f'Stage: {stage}, threshold {args.threshold}, confident nodes: {len(enhance_nid)} / {total_num_nodes - trainval_point}')
val_confident_level = (predict_prob[val_enhance_nid].argmax(1) == labels[val_enhance_nid]).sum() / len(val_enhance_nid)
print(f'\t\t val confident nodes: {len(val_enhance_nid)} / {valid_node_nums}, val confident level: {val_confident_level}')
test_confident_level = (predict_prob[test_enhance_nid].argmax(1) == labels[test_enhance_nid]).sum() / len(test_enhance_nid)
print(f'\t\ttest confident nodes: {len(test_enhance_nid)} / {test_node_nums}, test confident_level: {test_confident_level}')
del train_loader
train_batch_size = int(args.batch_size * len(self.flow.train_idx) / (len(enhance_nid) + len(self.flow.train_idx)))
train_loader = torch.utils.data.DataLoader(
torch.arange(train_node_nums), batch_size=train_batch_size, shuffle=True, drop_last=False)
enhance_batch_size = int(args.batch_size * len(enhance_nid) / (len(enhance_nid) + len(self.flow.train_idx)))
enhance_loader = torch.utils.data.DataLoader(
enhance_nid, batch_size=enhance_batch_size, shuffle=True, drop_last=False)
else:
train_loader = torch.utils.data.DataLoader(
torch.arange(train_node_nums), batch_size=args.batch_size, shuffle=True, drop_last=False)
# =======
# labels propagate alongside the metapath
# =======
label_feats = {}
if args.label_feats:
if stage > 0:
label_onehot = predict_prob[sort2init].clone()
else:
label_onehot = torch.zeros((num_nodes, n_classes))
label_onehot[self.flow.train_idx] = F.one_hot(self.flow.labels[self.flow.train_idx], n_classes).float()
self.flow.dataset.SeHGNN_g.nodes['P'].data['P'] = label_onehot
print(f'Current num label hops = {args.num_label_hops}')
max_hops = args.num_label_hops + 1
self.flow.dataset.SeHGNN_g = self.hg_propagate(self.flow.dataset.SeHGNN_g, tgt_type, args.num_label_hops, max_hops, echo=False)
keys = list(self.flow.dataset.SeHGNN_g.nodes[tgt_type].data.keys())
print(f'Involved label keys {keys}')
for k in keys:
if k == tgt_type: continue
label_feats[k] = self.flow.dataset.SeHGNN_g.nodes[tgt_type].data.pop(k)
self.flow.dataset.SeHGNN_g = self.clear_hg(self.flow.dataset.SeHGNN_g, echo=False)
for k in ['PPP', 'PAP', 'PFP', 'PPPP', 'PAPP', 'PPAP', 'PFPP', 'PPFP']:
if k in label_feats:
diag = torch.load(f'{args.dataset}_{k}_diag.pt')
label_feats[k] = label_feats[k] - diag.unsqueeze(-1) * label_onehot
assert torch.all(label_feats[k] > -1e-6)
print(k, torch.sum(label_feats[k] < 0), label_feats[k].min())
label_emb = (label_feats['PPP'] + label_feats['PAP'] + label_feats['PP'] + label_feats['PFP']) / 4
else:
label_emb = torch.zeros((num_nodes, n_classes))
label_feats = {k: v[init2sort] for k, v in label_feats.items()}
label_emb = label_emb[init2sort]
if stage == 0:
label_feats = {}
# =======
# Eval loader
# =======
if stage > 0:
del eval_loader
eval_loader = []
for batch_idx in range((num_nodes-trainval_point-1) // args.batch_size + 1):
batch_start = batch_idx * args.batch_size + trainval_point
batch_end = min(num_nodes, (batch_idx+1) * args.batch_size + trainval_point)
batch_feats = {k: v[batch_start:batch_end] for k,v in feats.items()}
batch_label_feats = {k: v[batch_start:batch_end] for k,v in label_feats.items()}
batch_labels_emb = label_emb[batch_start:batch_end]
eval_loader.append((batch_feats, batch_label_feats, batch_labels_emb))
data_size = {k: v.size(-1) for k, v in feats.items()}
# =======
# Construct network
# =======
args.data_size = data_size
args.nclass = n_classes
args.nfeat = args.embed_size
args.num_feats = len(feats)
args.num_label_feats = len(label_feats)
args.tgt_key = tgt_type
model = build_model(self.args.model).build_model_from_args(self.args).to(self.args.device)
if stage == args.start_stage:
print(model)
print("# Params:", self.get_n_params(model))
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
best_epoch = 0
best_val_acc = 0
best_test_acc = 0
count = 0
for epoch in range(epochs):
gc.collect()
torch.cuda.empty_cache()
start = time.time()
if stage == 0:
loss, acc = self.run(model, train_loader, loss_fcn, optimizer, evaluator, device, feats, label_feats, labels_cuda, label_emb, scalar=scalar)
else:
loss, acc = self.train_multi_stage(model, train_loader, enhance_loader, loss_fcn, optimizer, evaluator, device, feats, label_feats, labels_cuda, label_emb, predict_prob, args.gama, scalar=scalar)
end = time.time()
log = "Epoch {}, Time(s): {:.4f}, estimated train loss {:.4f}, acc {:.4f}\n".format(epoch, end-start, loss, acc*100)
torch.cuda.empty_cache()
if epoch % args.eval_every == 0:
with torch.no_grad():
model.eval()
raw_preds = []
start = time.time()
for batch_feats, batch_label_feats, batch_labels_emb in eval_loader:
batch_feats = {k: v.to(device) for k,v in batch_feats.items()}
batch_label_feats = {k: v.to(device) for k,v in batch_label_feats.items()}
batch_labels_emb = batch_labels_emb.to(device)
fk = {'0': batch_feats, '1': batch_label_feats, '2': batch_labels_emb}
raw_preds.append(model(fk).cpu())
raw_preds = torch.cat(raw_preds, dim=0)
loss_val = loss_fcn(raw_preds[:valid_node_nums], labels[trainval_point:valtest_point]).item()
loss_test = loss_fcn(raw_preds[valid_node_nums:valid_node_nums+test_node_nums], labels[valtest_point:total_num_nodes]).item()
preds = raw_preds.argmax(dim=-1)
val_acc = evaluator(preds[:valid_node_nums], labels[trainval_point:valtest_point])
test_acc = evaluator(preds[valid_node_nums:valid_node_nums+test_node_nums], labels[valtest_point:total_num_nodes])
end = time.time()
log += f'Time: {end-start}, Val loss: {loss_val}, Test loss: {loss_test}\n'
log += 'Val acc: {:.4f}, Test acc: {:.4f}\n'.format(val_acc*100, test_acc*100)
if val_acc > best_val_acc:
best_epoch = epoch
best_val_acc = val_acc
best_test_acc = test_acc
torch.save(model.state_dict(), f'{checkpt_file}_{stage}.pkl')
count = 0
else:
count = count + args.eval_every
if count >= args.patience:
break
log += "Best Epoch {},Val {:.4f}, Test {:.4f}".format(best_epoch, best_val_acc*100, best_test_acc*100)
print(log, flush=True)
print("Best Epoch {}, Val {:.4f}, Test {:.4f}".format(best_epoch, best_val_acc*100, best_test_acc*100))
model.load_state_dict(torch.load(checkpt_file+f'_{stage}.pkl'))
raw_preds = self.gen_output_torch(model, feats, label_feats, label_emb, all_loader, device)
torch.save(raw_preds, checkpt_file+f'_{stage}.pt')
def set_random_seed(self, seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def get_n_params(self, model):
pp = 0
for p in list(model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
return pp
def hg_propagate(self, new_g, tgt_type, num_hops, max_hops, echo=False):
for hop in range(1, max_hops):
for etype in new_g.etypes:
stype, _, dtype = new_g.to_canonical_etype(etype)
for k in list(new_g.nodes[stype].data.keys()):
if len(k) == hop:
current_dst_name = f'{dtype}{k}'
if (hop == num_hops and dtype != tgt_type) or (hop > num_hops):
continue
if echo: print(k, etype, current_dst_name)
new_g[etype].update_all(
fn.copy_u(k, 'm'),
fn.mean('m', current_dst_name), etype=etype)
# remove no-use items
for ntype in new_g.ntypes:
if ntype == tgt_type: continue
removes = []
for k in new_g.nodes[ntype].data.keys():
if len(k) <= hop:
removes.append(k)
for k in removes:
new_g.nodes[ntype].data.pop(k)
if echo and len(removes): print('remove', removes)
gc.collect()
if echo: print(f'-- hop={hop} ---')
for ntype in new_g.ntypes:
for k, v in new_g.nodes[ntype].data.items():
if echo: print(f'{ntype} {k} {v.shape}')
if echo: print(f'------\n')
return new_g
def clear_hg(self, new_g, echo=False):
if echo: print('Remove keys left after propagation')
for ntype in new_g.ntypes:
keys = list(new_g.nodes[ntype].data.keys())
if len(keys):
if echo: print(ntype, keys)
for k in keys:
new_g.nodes[ntype].data.pop(k)
return new_g
def run(self, model, train_loader, loss_fcn, optimizer, evaluator, device,
feats, label_feats, labels_cuda, label_emb, mask=None, scalar=None):
model.train()
total_loss = 0
iter_num = 0
y_true, y_pred = [], []
for batch in train_loader:
batch_feats = {k: x[batch].to(device) for k, x in feats.items()}
batch_labels_feats = {k: x[batch].to(device) for k, x in label_feats.items()}
# if mask is not None:
# batch_mask = {k: x[batch].to(device) for k, x in mask.items()}
# else:
# batch_mask = None
batch_label_emb = label_emb[batch].to(device)
batch_y = labels_cuda[batch]
optimizer.zero_grad()
if scalar is not None:
with torch.cuda.amp.autocast():
fk = {'0': batch_feats, '1' :batch_labels_feats, '2': batch_label_emb}
output_att = model(fk)
if isinstance(loss_fcn, nn.BCELoss):
output_att = torch.sigmoid(output_att)
loss_train = loss_fcn(output_att, batch_y)
scalar.scale(loss_train).backward()
scalar.step(optimizer)
scalar.update()
else:
fk = {'0': batch_feats, '1': batch_labels_feats,'2': batch_label_emb}
output_att = model(fk)
if isinstance(loss_fcn, nn.BCELoss):
output_att = torch.sigmoid(output_att)
L1 = loss_fcn(output_att, batch_y)
loss_train = L1
loss_train.backward()
optimizer.step()
y_true.append(batch_y.cpu().to(torch.long))
if isinstance(loss_fcn, nn.BCELoss):
y_pred.append((output_att.data.cpu() > 0).int())
else:
y_pred.append(output_att.argmax(dim=-1, keepdim=True).cpu())
total_loss += loss_train.item()
iter_num += 1
loss = total_loss / iter_num
acc = evaluator(torch.cat(y_true, dim=0), torch.cat(y_pred, dim=0))
return loss, acc
def train_multi_stage(self, model, train_loader, enhance_loader, loss_fcn, optimizer, evaluator, device,
feats, label_feats, labels, label_emb, predict_prob, gama, scalar=None):
model.train()
loss_fcn = nn.CrossEntropyLoss()
y_true, y_pred = [], []
total_loss = 0
loss_l1, loss_l2 = 0., 0.
iter_num = 0
for idx_1, idx_2 in zip(train_loader, enhance_loader):
idx = torch.cat((idx_1, idx_2), dim=0)
L1_ratio = len(idx_1) * 1.0 / (len(idx_1) + len(idx_2))
L2_ratio = len(idx_2) * 1.0 / (len(idx_1) + len(idx_2))
batch_feats = {k: x[idx].to(device) for k, x in feats.items()}
batch_labels_feats = {k: x[idx].to(device) for k, x in label_feats.items()}
batch_label_emb = label_emb[idx].to(device)
y = labels[idx_1].to(torch.long).to(device)
extra_weight, extra_y = predict_prob[idx_2].max(dim=1)
extra_weight = extra_weight.to(device)
extra_y = extra_y.to(device)
optimizer.zero_grad()
if scalar is not None:
with torch.cuda.amp.autocast():
fk = {'0': batch_feats, '1': batch_labels_feats, '2': batch_label_emb}
output_att = model(fk)
L1 = loss_fcn(output_att[:len(idx_1)], y)
L2 = F.cross_entropy(output_att[len(idx_1):], extra_y, reduction='none')
L2 = (L2 * extra_weight).sum() / len(idx_2)
loss_train = L1_ratio * L1 + gama * L2_ratio * L2
scalar.scale(loss_train).backward()
scalar.step(optimizer)
scalar.update()
else:
while True:
print("Yy")
fk = {'0': batch_feats, '1': label_emb[idx].to(device)}
output_att = model(fk)
L1 = loss_fcn(output_att[:len(idx_1)], y)
L2 = F.cross_entropy(output_att[len(idx_1):], extra_y, reduction='none')
L2 = (L2 * extra_weight).sum() / len(idx_2)
loss_train = L1_ratio * L1 + gama * L2_ratio * L2
loss_train.backward()
optimizer.step()
y_true.append(labels[idx_1].to(torch.long))
y_pred.append(output_att[:len(idx_1)].argmax(dim=-1, keepdim=True).cpu())
total_loss += loss_train.item()
loss_l1 += L1.item()
loss_l2 += L2.item()
iter_num += 1
print(loss_l1 / iter_num, loss_l2 / iter_num)
loss = total_loss / iter_num
approx_acc = evaluator(torch.cat(y_true, dim=0), torch.cat(y_pred, dim=0))
return loss, approx_acc
@torch.no_grad()
def gen_output_torch(self, model, feats, label_feats, label_emb, test_loader, device):
model.eval()
preds = []
for batch in tqdm(test_loader):
batch_feats = {k: x[batch].to(device) for k, x in feats.items()}
batch_labels_feats = {k: x[batch].to(device) for k, x in label_feats.items()}
batch_label_emb = label_emb[batch].to(device)
preds.append(model(batch_feats, batch_labels_feats, batch_label_emb).cpu())
preds = torch.cat(preds, dim=0)
return preds
def get_ogb_evaluator(self, dataset):
evaluator = Evaluator(name=dataset)
return lambda preds, labels: evaluator.eval({
"y_true": labels.view(-1, 1),
"y_pred": preds.view(-1, 1),
})["acc"]