forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransX_trainer.py
132 lines (110 loc) · 5.27 KB
/
TransX_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch as th
from tqdm import tqdm
from . import BaseFlow, register_flow
from ..models import build_model
from ..utils import EarlyStopping
from ..sampler.TransX_sampler import TransX_Sampler
@register_flow("TransX_trainer")
class TransXTrainer(BaseFlow):
"""TransX flows."""
def __init__(self, args):
super(TransXTrainer, self).__init__(args)
self.args = args
self.model_name = args.model
self.device = args.device
self.batch_size = args.batch_size
self.neg_size = args.neg_size
self.score_size = args.batch_size * (args.neg_size * 2 + 1)
self.max_epoch = args.max_epoch
self.margin = args.margin
self.train_hg = self.task.get_train()
self.model = build_model(self.model).build_model_from_args(self.args, self.hg)
self.model = self.model.to(self.device)
self.optimizer = self.candidate_optimizer[args.optimizer](self.model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
self.stopper = EarlyStopping(args.patience, self._checkpoint)
self.task.ScorePredictor = self.model.forward # new score prdictor here
self.num_nodes = getattr(self.task.dataset, 'num_nodes', self.hg.num_nodes())
self.num_rels = getattr(self.task.dataset, 'num_rels', self.hg.num_edges())
def preprocess(self):
self.load_from_pretrained()
self.train_hg.to(self.device)
self.train_sampler = TransX_Sampler(self.train_hg, self.args)
self.node_range = th.arange(0, self.num_nodes).to(self.device)
self.rel_range = th.arange(0, self.num_rels).to(self.device)
if self.args.score_fn == 'transr': # load transe data when training transr
transe_state_dict = th.load(self.stopper.save_path.replace("TransR", "TransE"))
self.model.n_emb.weight.data = transe_state_dict['n_emb.weight']
self.model.r_emb.weight.data = transe_state_dict['r_emb.weight']
print("load")
def train(self):
self.preprocess()
epoch = self._train()
self.stopper.load_model(self.model)
if self.args.test_flag:
test_matrix = self._test()
return dict(metric=test_matrix, epoch=epoch)
if self.args.prediction_flag:
return self._pred_step()
def _train(self):
batch_num = self.train_sampler.batch_num
for epoch in range(self.max_epoch):
self.logger.info(f"[Train Info] epoch {epoch:03d}")
self.model.train()
loss_sum = 0
iter_range = tqdm(range(batch_num), ncols=100)
for iter in iter_range:
self.optimizer.zero_grad()
pos_g = self.train_sampler.get_pos()
neg_g = self.train_sampler.get_neg()
h_emb, r_emb, t_emb = th.cat((pos_g[0], neg_g[0]), -1), th.cat((pos_g[1], neg_g[1]), -1), th.cat(
(pos_g[2], neg_g[2]), -1)
loss = self.loss_calculation(h_emb, r_emb, t_emb)
loss.backward()
self.optimizer.step()
loss_sum += loss.item()
self.logger.info(f"[Train Info] epoch {epoch:03d} loss: {loss_sum}")
if epoch % self.evaluate_interval == 0:
val_metric = self._test_step('valid')
self.logger.info("[Evaluation metric] " + str(val_metric)) # out test result
early_stop = self.stopper.loss_step(val_metric['valid']['MR'], self.model) # less is better
if early_stop:
self.logger.train_info(f'Early Stop!\tEpoch:{epoch:03d}.')
break
if self.max_epoch == 0:
return 0
else:
return epoch
def loss_calculation(self, h_emb, r_emb, t_emb):
score = self.task.ScorePredictor(h_emb, r_emb, t_emb)
if score.size(dim=0) == self.score_size:
batch_size = self.batch_size
else: # last batch of a round
batch_size = score.size(dim=0) // (self.neg_size * 2 + 1)
p_score = score[:batch_size]
p_score = p_score.view(batch_size, 1)
n_score = score[batch_size:]
n_score_split = th.chunk(n_score, 2, dim=0)
n_score_tail = n_score_split[0].view(batch_size, self.neg_size) # change tail
n_score_head = n_score_split[1].view(batch_size, self.neg_size) # change head
n_score = th.cat((n_score_head, n_score_tail), dim=1)
loss = th.clamp(p_score - n_score + self.margin, min=0.0).mean()
return loss
def _test(self):
test_metric = self._test_step('test')
self.logger.info("[Test Info] " + str(test_metric)) # out test result
return test_metric # dict
def _test_step(self, mode):
self.model.eval()
with th.no_grad():
n_emb = th.arange(self.num_nodes)
r_emb_pre = th.arange(self.num_rels)
# n_emb, r_emb_pre, _ = self.model(self.node_range, self.rel_range, th.tensor(0))
r_emb = {}
for i in range(self.num_rels):
r_emb[i] = r_emb_pre[i]
return {mode: self.task.evaluate(n_emb, r_emb, mode)}
def _pred_step(self):
self.model.eval()
with th.no_grad():
return self.task.tranX_predict()