forked from Francis-Rings/StableAnimator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
349 lines (308 loc) · 15.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import cv2
import numpy as np
from PIL import Image
from diffusers.models.attention_processor import XFormersAttnProcessor
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torch
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from animation.modules.attention_processor import AnimationAttnProcessor
from animation.modules.attention_processor_normalized import AnimationIDAttnNormalizedProcessor
from animation.modules.face_model import FaceModel
from animation.modules.id_encoder import FusionFaceId
from animation.modules.pose_net import PoseNet
from animation.modules.unet import UNetSpatioTemporalConditionModel
from animation.pipelines.inference_pipeline_animation import InferenceAnimationPipeline
import random
import gradio as gr
import gc
from datetime import datetime
from pathlib import Path
pretrained_model_name_or_path = "checkpoints/stable-video-diffusion-img2vid-xt"
revision = None
posenet_model_name_or_path = "checkpoints/Animation/pose_net.pth"
face_encoder_model_name_or_path = "checkpoints/Animation/face_encoder.pth"
unet_model_name_or_path = "checkpoints/Animation/unet.pth"
def load_images_from_folder(folder, width, height):
images = []
files = os.listdir(folder)
png_files = [f for f in files if f.endswith('.png')]
png_files.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
for filename in png_files:
img = Image.open(os.path.join(folder, filename)).convert('RGB')
img = img.resize((width, height))
images.append(img)
return images
def save_frames_as_png(frames, output_path):
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames]
num_frames = len(pil_frames)
for i in range(num_frames):
pil_frame = pil_frames[i]
save_path = os.path.join(output_path, f'frame_{i}.png')
pil_frame.save(save_path)
def save_frames_as_mp4(frames, output_mp4_path, fps):
print("Starting saving the frames as mp4")
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 'H264' for better quality
out = cv2.VideoWriter(output_mp4_path, fourcc, fps, (width, height))
for frame in frames:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
def export_to_gif(frames, output_gif_path, fps):
"""
Export a list of frames to a GIF.
Args:
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- output_gif_path (str): Path to save the output GIF.
- duration_ms (int): Duration of each frame in milliseconds.
"""
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(
frame, np.ndarray) else frame for frame in frames]
pil_frames[0].save(output_gif_path.replace('.mp4', '.gif'),
format='GIF',
append_images=pil_frames[1:],
save_all=True,
duration=125,
loop=0)
def generate(
image_input: str,
pose_input: str,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
fps: int,
frames_overlap: int,
tile_size: int,
noise_aug_strength: float,
decode_chunk_size: int,
seed: int,
):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = Path("outputs")
output_dir = os.path.join(output_dir, timestamp)
if seed == -1:
seed = random.randint(1, 2**20 - 1)
generator = torch.Generator(device=device).manual_seed(seed)
pipeline = InferenceAnimationPipeline(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=noise_scheduler,
feature_extractor=feature_extractor,
pose_net=pose_net,
face_encoder=face_encoder,
).to(device=device, dtype=dtype)
validation_image_path = image_input
validation_image = Image.open(image_input).convert('RGB')
validation_control_images = load_images_from_folder(pose_input, width=width, height=height)
num_frames = len(validation_control_images)
face_model.face_helper.clean_all()
validation_face = cv2.imread(validation_image_path)
validation_image_bgr = cv2.cvtColor(validation_face, cv2.COLOR_RGB2BGR)
validation_image_face_info = face_model.app.get(validation_image_bgr)
if len(validation_image_face_info) > 0:
validation_image_face_info = sorted(validation_image_face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
validation_image_id_ante_embedding = validation_image_face_info['embedding']
else:
validation_image_id_ante_embedding = None
if validation_image_id_ante_embedding is None:
face_model.face_helper.read_image(validation_image_bgr)
face_model.face_helper.get_face_landmarks_5(only_center_face=True)
face_model.face_helper.align_warp_face()
if len(face_model.face_helper.cropped_faces) == 0:
validation_image_id_ante_embedding = np.zeros((512,))
else:
validation_image_align_face = face_model.face_helper.cropped_faces[0]
print('fail to detect face using insightface, extract embedding on align face')
validation_image_id_ante_embedding = face_model.handler_ante.get_feat(validation_image_align_face)
# generator = torch.Generator(device=accelerator.device).manual_seed(23123134)
decode_chunk_size = decode_chunk_size
video_frames = pipeline(
image=validation_image,
image_pose=validation_control_images,
height=height,
width=width,
num_frames=num_frames,
tile_size=tile_size,
tile_overlap=frames_overlap,
decode_chunk_size=decode_chunk_size,
motion_bucket_id=127.,
fps=7,
min_guidance_scale=guidance_scale,
max_guidance_scale=guidance_scale,
noise_aug_strength=noise_aug_strength,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
validation_image_id_ante_embedding=validation_image_id_ante_embedding,
).frames[0]
out_file = os.path.join(
output_dir,
f"animation_video.mp4",
)
for i in range(num_frames):
img = video_frames[i]
video_frames[i] = np.array(img)
png_out_file = os.path.join(output_dir, "animated_images")
os.makedirs(png_out_file, exist_ok=True)
save_frames_as_mp4(video_frames, out_file, fps)
export_to_gif(video_frames, out_file, fps)
save_frames_as_png(video_frames, png_out_file)
seed_update = gr.update(visible=True, value=seed)
return out_file, seed_update
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<div>
<h2 style="font-size: 30px;text-align: center;">StableAnimator</h2>
</div>
<div style="text-align: center;">
<a href="https://github.com/Francis-Rings/StableAnimator">🌐 Github</a> |
<a href="https://arxiv.org/abs/2411.17697">📜 arXiv </a>
</div>
<div style="text-align: center; font-weight: bold; color: red;">
⚠️ This demo is for academic research and experiential use only.
</div>
""")
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(label="Reference Image", type="filepath")
pose_input = gr.Textbox(label="Driven Poses", placeholder="Please enter your driven pose directory here.")
with gr.Group():
with gr.Row():
width = gr.Number(label="Width (supports only 512×512 and 576×1024)", value=512)
height = gr.Number(label="Height (supports only 512×512 and 576×1024)", value=512)
with gr.Row():
guidance_scale = gr.Number(label="Guidance scale (recommended 3.0)", value=3.0, step=0.1, precision=1)
num_inference_steps = gr.Number(label="Inference steps (recommended 25)", value=20)
with gr.Row():
fps = gr.Number(label="FPS", value=8)
frames_overlap = gr.Number(label="Overlap Frames (recommended 4)", value=4)
with gr.Row():
tile_size = gr.Number(label="Tile Size (recommended 16)", value=16)
noise_aug_strength = gr.Number(label="Noise Augmentation Strength (recommended 0.02)", value=0.02, step=0.01, precision=2)
with gr.Row():
decode_chunk_size = gr.Number(label="Decode Chunk Size (recommended 4 or 16)", value=4)
seed = gr.Number(label="Random Seed (Enter a positive number, -1 for random)", value=-1)
generate_button = gr.Button("🎬 Generate The Video")
with gr.Column():
video_output = gr.Video(label="Generate The Video")
with gr.Row():
seed_text = gr.Number(label="Video Generation Seed", visible=False, interactive=False)
gr.Examples([
["inference/case-1/reference.png","inference/case-1/poses",512,512],
["inference/case-2/reference.png","inference/case-2/poses",512,512],
["inference/case-3/reference.png","inference/case-3/poses",512,512],
["inference/case-4/reference.png","inference/case-4/poses",512,512],
["inference/case-5/reference.png","inference/case-5/poses",576,1024],
], inputs=[image_input, pose_input, width, height])
generate_button.click(
generate,
inputs=[image_input, pose_input, width, height, guidance_scale, num_inference_steps, fps, frames_overlap, tile_size, noise_aug_strength, decode_chunk_size, seed],
outputs=[video_output, seed_text],
)
if __name__ == "__main__":
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_name_or_path, subfolder="feature_extractor", revision=revision)
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_name_or_path, subfolder="image_encoder", revision=revision)
vae = AutoencoderKLTemporalDecoder.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
unet = UNetSpatioTemporalConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
low_cpu_mem_usage=True,
)
pose_net = PoseNet(noise_latent_channels=unet.config.block_out_channels[0])
face_encoder = FusionFaceId(
cross_attention_dim=1024,
id_embeddings_dim=512,
# clip_embeddings_dim=image_encoder.config.hidden_size,
clip_embeddings_dim=1024,
num_tokens=4, )
face_model = FaceModel()
lora_rank = 128
attn_procs = {}
unet_svd = unet.state_dict()
for name in unet.attn_processors.keys():
if "transformer_blocks" in name and "temporal_transformer_blocks" not in name:
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
# print(f"This is AnimationAttnProcessor: {name}")
attn_procs[name] = AnimationAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
else:
# print(f"This is AnimationIDAttnProcessor: {name}")
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_svd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_svd[layer_name + ".to_v.weight"],
}
attn_procs[name] = AnimationIDAttnNormalizedProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
attn_procs[name].load_state_dict(weights, strict=False)
elif "temporal_transformer_blocks" in name:
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = XFormersAttnProcessor()
else:
attn_procs[name] = XFormersAttnProcessor()
unet.set_attn_processor(attn_procs)
# resume the previous checkpoint
if posenet_model_name_or_path is not None and face_encoder_model_name_or_path is not None and unet_model_name_or_path is not None:
print("Loading existing posenet weights, face_encoder weights and unet weights.")
if posenet_model_name_or_path.endswith(".pth"):
pose_net_state_dict = torch.load(posenet_model_name_or_path, map_location="cpu")
pose_net.load_state_dict(pose_net_state_dict, strict=True)
else:
print("posenet weights loading fail")
print(1/0)
if face_encoder_model_name_or_path.endswith(".pth"):
face_encoder_state_dict = torch.load(face_encoder_model_name_or_path, map_location="cpu")
face_encoder.load_state_dict(face_encoder_state_dict, strict=True)
else:
print("face_encoder weights loading fail")
print(1/0)
if unet_model_name_or_path.endswith(".pth"):
unet_state_dict = torch.load(unet_model_name_or_path, map_location="cpu")
unet.load_state_dict(unet_state_dict, strict=True)
else:
print("unet weights loading fail")
print(1/0)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet.requires_grad_(False)
pose_net.requires_grad_(False)
face_encoder.requires_grad_(False)
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA version:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch version:{torch.__version__}\033[0m')
print(f'\033[32mGPU Type:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32mGPU Memory:{total_vram_in_gb:.2f}GB\033[0m')
if torch.cuda.get_device_capability()[0] >= 8:
print(f'\033[32mSupports BF16, use BF16\033[0m')
dtype = torch.bfloat16
else:
print(f'\033[32mBF16 is not supported, use FP16. The 5B model is not recommended\033[0m')
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
demo.queue()
demo.launch(inbrowser=True)