-
Notifications
You must be signed in to change notification settings - Fork 1
/
SRDDPG_IN_DREAM_V1.py
418 lines (350 loc) · 19.2 KB
/
SRDDPG_IN_DREAM_V1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import matplotlib
matplotlib.use('TkAgg')
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
import os
import math
import gym
from gym import spaces, logger
from gym.utils import seeding
from cartpole_uncertainty import CartPoleEnv_adv as dreamer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
##################### hyper parameters ####################
MAX_EPISODES = 50000
MAX_EP_STEPS =2500
LR_A = 0.0001 # learning rate for actor
LR_C = 0.0002 # learning rate for critic
LR_D = 0.00001 # learning rate for DREAM STATE
LR_R = 0.00001 # learning rate for DREAM SCORE
GAMMA = 0.99 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 10000
BATCH_SIZE = 128
labda=10.
tol = 0.001
RENDER = True
Dreamer_update=True
REAL_SCORE=True
print("Dreamer_update = ",Dreamer_update," , REAL_SCORE = ",REAL_SCORE)
env = dreamer()
env = env.unwrapped
EWMA_p=0.95
EWMA_step=np.zeros((1,MAX_EPISODES+1))
EWMA_reward=np.zeros((1,MAX_EPISODES+1))
iteration=np.zeros((1,MAX_EPISODES+1))
var = 5 # control exploration
t1 = time.time()
min_loss_s=0.001
min_loss_r=0.01
loss_r=100
max_reward=100000
max_ewma_reward=20000
############################### DDPG ####################################
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,):
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32)
self.pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.LR_A= tf.placeholder(tf.float32, None, 'LR_A')
self.LR_C = tf.placeholder(tf.float32, None, 'LR_C')
self.labda= tf.placeholder(tf.float32, None, 'Lambda')
self.a = self._build_a(self.S,)# 这个网络用于及时更新参数
self.q = self._build_c(self.S, self.a, )# 这个网络是用于及时更新参数
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Critic')
ema = tf.train.ExponentialMovingAverage(decay=1 - TAU) # soft replacement
def ema_getter(getter, name, *args, **kwargs):
return ema.average(getter(name, *args, **kwargs))
target_update = [ema.apply(a_params), ema.apply(c_params)] # soft update operation
# 这个网络不及时更新参数, 用于预测 Critic 的 Q_target 中的 action
a_ = self._build_a(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters
a_cons = self._build_a(self.S_, reuse=True)
# 这个网络不及时更新参数, 用于给出 Actor 更新参数时的 Gradient ascent 强度
# q_ = self._build_c(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
q_ = self._build_c(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
self.q_cons = self._build_c(self.S_, a_cons, reuse=True)
self.q_lambda =tf.reduce_mean(self.q - self.q_cons)
# self.q_lambda = tf.reduce_mean(self.q_cons - self.q)
a_loss = - tf.reduce_mean(self.q) + self.labda * self.q_lambda # maximize the q
self.atrain = tf.train.AdamOptimizer(self.LR_A).minimize(a_loss, var_list=a_params)#以learning_rate去训练,方向是minimize loss,调整列表参数,用adam
with tf.control_dependencies(target_update): # soft replacement happened at here
q_target = self.R + GAMMA * q_
td_error = tf.losses.mean_squared_error(labels=q_target, predictions=self.q)
self.ctrain = tf.train.AdamOptimizer(self.LR_C).minimize(td_error, var_list=c_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
def choose_action(self, s):
return self.sess.run(self.a, {self.S: s[np.newaxis, :]})[0]
def learn(self,LR_A,LR_C,labda):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
br = bt[:, -self.s_dim - 1: -self.s_dim]
bs_ = bt[:, -self.s_dim:]
self.sess.run(self.atrain, {self.S: bs, self.S_: bs_, self.LR_A: LR_A,self.labda:labda})
self.sess.run(self.ctrain,{self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.LR_C: LR_C,self.labda:labda})
return self.sess.run(self.q_lambda,{self.S: bs, self.a: ba, self.R: br, self.S_: bs_}),self.sess.run(self.R, {self.R: br})
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
#action 选择模块也是actor模块
def _build_a(self, s, reuse=None, custom_getter=None):
trainable = True
with tf.variable_scope('Actor', reuse=reuse, custom_getter=custom_getter):
net_0 = tf.layers.dense(s, 256, activation=tf.nn.relu, name='l1', trainable=trainable)#原始是30
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable) # 原始是30
a = tf.layers.dense(net_3, self.a_dim, activation=tf.nn.tanh, name='a', trainable=trainable)
return tf.multiply(a, self.a_bound, name='scaled_a')
#critic模块
def _build_c(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Critic', reuse=reuse, custom_getter=custom_getter):
n_l1 = 256#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 128, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
return tf.layers.dense(net_2, 1, trainable=trainable) # Q(s,a)
def save_result(self):
# save_path = self.saver.save(self.sess, "Save/cartpole_g10_M1_m0.1_l0.5_tau_0.02.ckpt")
save_path = self.saver.save(self.sess, "Model/SRDDPG_IN_DREAM_ONLINE_V1.ckpt")
print("Save to path: ", save_path)
############################### DREAMER ####################################
class Dreamer(object):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 50
}
def __init__(self, a_dim, s_dim, a_bound,):
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32)
self.pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.LR_D= tf.placeholder(tf.float32, None, 'LR_D')
self.LR_R = tf.placeholder(tf.float32, None, 'LR_R')
self.x_threshold = 5
self.A = tf.placeholder(tf.float32, [None, a_dim], 'a')
self.dreamer = self._build_dreamer(self.S, self.A, )
self.score=self._build_score(self.dreamer)
d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Dreamer')
r_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Score')
self.viewer = None
self.state = None
self.dreamer_loss_s = tf.reduce_mean(tf.squared_difference(self.S_, self.dreamer))
self.dreamer_loss_r = tf.reduce_mean(tf.squared_difference(self.R, self.score))
self.dreamertrain_s = tf.train.AdamOptimizer(self.LR_D).minimize(self.dreamer_loss_s,var_list = d_params)
self.dreamertrain_r = tf.train.AdamOptimizer(self.LR_R).minimize(self.dreamer_loss_r, var_list=r_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
self.saver.restore(self.sess, "Model/SRDDPG_D_V1.ckpt") # 1 0.1 0.5 0.001
def dream(self, s,a):
self.state=self.sess.run(self.dreamer, {self.S: s[np.newaxis, :],self.A: a[np.newaxis, :]})[0]
return self.sess.run(self.dreamer, {self.S: s[np.newaxis, :],self.A: a[np.newaxis, :]})[0],self.sess.run(self.score, {self.S: s[np.newaxis, :],self.A: a[np.newaxis, :]})[0]
def learn(self,LR_D,LR_R):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
bs_ = bt[:, -self.s_dim:]
br = bt[:, -self.s_dim - 1: -self.s_dim]
self.sess.run(self.dreamertrain_s, {self.S: bs,self.A: ba, self.S_: bs_, self.LR_D: LR_D})
self.sess.run(self.dreamertrain_r, {self.S: bs, self.A: ba, self.R: br, self.LR_R: LR_R})
return self.sess.run(self.dreamer_loss_s, {self.S: bs,self.A: ba, self.S_: bs_}),self.sess.run(self.dreamer_loss_r, {self.S: bs,self.A: ba, self.R: br})
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
def _build_dreamer(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Dreamer', reuse=reuse, custom_getter=custom_getter):
n_l1 = 512#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable)
return tf.layers.dense(net_2, self.s_dim, trainable=trainable)
def _build_score(self, s,reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Score', reuse=reuse, custom_getter=custom_getter):
n_l1 = 512 # 30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s)+ b1)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable)
return tf.layers.dense(net_2, 1, trainable=trainable)
def save_result(self):
save_path = self.saver.save(self.sess, "Model/SRDDPG_D_ONLINE.ckpt")
print("Save to path: ", save_path)
def render(self, mode='human'):
screen_width = 800
screen_height = 400
world_width = self.x_threshold * 2
scale = screen_width / world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * 1.0
cartwidth = 50.0
cartheight = 30.0
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
pole.set_color(.8, .6, .4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth / 2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5, .5, .8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0, carty), (screen_width, carty))
self.track.set_color(0, 0, 0)
self.viewer.add_geom(self.track)
if self.state is None: return None
x = self.state
cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None
############################### INITIALIZE ####################################
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
env_dream=Dreamer(a_dim, s_dim, a_bound)
ddpg = DDPG(a_dim, s_dim, a_bound)
############################### TRAINING ####################################
# env.seed(1) # 普通的 Policy gradient 方法, 使得回合的 variance 比较大, 所以我们选了一个好点的随机种子
for i in range(MAX_EPISODES):
iteration[0,i+1]=i+1
s = env.reset()
DREAM_REWARD = 0
REAL_REWARD = 0
for j in range(MAX_EP_STEPS):
if RENDER:
env_dream.render()
# Choose action
# Add exploration noise
a = ddpg.choose_action(s)
a = np.clip(np.random.normal(a, var), -a_bound, a_bound) # add randomness to action selection for exploration
# RUN IN REAL IN TO GET INFORMATION OF DIE OR NOT
# IF Dreamer_update=True, GET INFORMATION OF THE S,A,R1,S_
# 得到的是真实的 s,a->s_ 和 r
# 主要是判断是否游戏结束
# r_real是s_real的函数
s_real, r_real, done, hit = env.step(a) # S_=ENV(S,A), R=REWARD(S_)
# RUN IN DREAM
# 得到的是梦境中的s,a->s_dream 和 r_dream
s_dream, r_dream = env_dream.dream(s, a)
# 得分修正
r_dream=r_dream*100
# 构建得分函数 R=REWARD(S_) 和真实得分函数一样
x, _, theta, _=s_dream
r_1 = ((1 - abs(x))) # - 0.8
r_2 = (((20 * 2 * math.pi / 360) / 4) - abs(theta)) / ((20 * 2 * math.pi / 360) / 4) # - 0.5
reward = np.sign(r_2) * ((10 * r_2) ** 2) + np.sign(r_1) * ((10 * r_1) ** 2)
# 两种得分给予方式,真实得分和梦境拟合得分
if REAL_SCORE==False:
reward=r_dream
#储存s,a和梦境中的s_dream,r_dream用于DDPG的学习
# ddpg.store_transition(s, a, (r/10)[0], s_)
ddpg.store_transition(s, a, (reward / 10), s_dream)
#如果DRAMER在线更新,则储存s,a和真实的s_,r
if Dreamer_update:
env_dream.store_transition(s, a, r_real / 100, s_real)
#DDPG LEARN
if ddpg.pointer > MEMORY_CAPACITY:
# Decay the action randomness
var *= .99999
l_q,l_r=ddpg.learn(LR_A,LR_C,labda)
if l_q>tol:
if labda==0:
labda = 1e-8
labda = min(labda*2,11)
if labda==11:
labda = 1e-8
if l_q<-tol:
labda = labda/2
# DREAMER LEARN
if Dreamer_update:
if env_dream.pointer > MEMORY_CAPACITY:
LR_D *= .99995
LR_R *= .99995
loss_s, loss_r = env_dream.learn(LR_D, LR_R)
if loss_s < min_loss_s:
LR_D *= (loss_s / min_loss_s)
min_loss_s = loss_s
if loss_r < min_loss_r:
LR_R *= (loss_r / min_loss_r)
min_loss_r = loss_r
env_dream.save_result()
# 梦境状态更新
s = s_dream
# 现实状态与梦境同步,用于进行下一次的现实STEP
env.state = s_dream
# 得到现实得分与梦境得分,帮助分析
DREAM_REWARD += reward
REAL_REWARD += r_real
# OUTPUT TRAINING INFORMATION
if j == MAX_EP_STEPS - 1:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*DREAM_REWARD
print('Episode:', i, ' Reward: %i' % int(DREAM_REWARD),' REAL Reward: %i' % int(REAL_REWARD), 'Difference : ',abs(1-(DREAM_REWARD/REAL_REWARD)),'Explore: %.2f' % var,"good","EWMA_step = ",EWMA_step[0,i+1],"EWMA_reward = ",EWMA_reward[0,i+1],"LR_A = ",LR_A,'lambda',labda,'Minimum loss S :',min_loss_s, 'Minimum loss R :',min_loss_r,'LR_D :',LR_D,'LR_R :',LR_R,loss_r)
if EWMA_reward[0,i+1]>max_ewma_reward:
max_ewma_reward=min(EWMA_reward[0,i+1]+1000,500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
ddpg.save_result()
if DREAM_REWARD> max_reward:
max_reward = min(DREAM_REWARD+5000,500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
ddpg.save_result()
print("max_reward : ",DREAM_REWARD)
else:
LR_A *= .99
LR_C *= .99
break
elif done:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*DREAM_REWARD
if hit==1:
print('Episode:', i, ' Reward: %i' % int(DREAM_REWARD),' REAL Reward: %i' % int(REAL_REWARD),'Difference : ',abs(1-(DREAM_REWARD/REAL_REWARD)), 'Explore: %.2f' % var, "break in : ", j, "due to ",
"hit the wall", "EWMA_step = ", EWMA_step[0, i + 1], "EWMA_reward = ", EWMA_reward[0, i + 1],"LR_A = ",LR_A,'lambda',labda, 'Minimum loss S :',min_loss_s, 'Minimum loss R :',min_loss_r,'LR_D :',LR_D,'LR_R :',LR_R,loss_r)
else:
print('Episode:', i, ' Reward: %i' % int(DREAM_REWARD), ' REAL Reward: %i' % int(REAL_REWARD),'Difference : ',abs(1-(DREAM_REWARD/REAL_REWARD)),'Explore: %.2f' % var, "break in : ", j, "due to",
"fall down","EWMA_step = ", EWMA_step[0, i + 1], "EWMA_reward = ", EWMA_reward[0, i + 1],"LR_A = ",LR_A,'lambda',labda, 'Minimum loss S :',min_loss_s, 'Minimum loss R :',min_loss_r,'LR_D :',LR_D,'LR_R :',LR_R,loss_r)
break