-
Notifications
You must be signed in to change notification settings - Fork 1
/
SRDDPG_V8.py
332 lines (274 loc) · 14.6 KB
/
SRDDPG_V8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import matplotlib
matplotlib.use('TkAgg')
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
from ENV_V0 import CartPoleEnv_adv as dreamer
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
##################### hyper parameters ####################
MAX_EPISODES = 2000
MAX_EP_STEPS =2500
LR_A = 0.0001 # learning rate for actor
LR_C = 0.0002 # learning rate for critic
LR_L = 0.0002 # learning rate for Lyapunov
GAMMA = 0.99 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 10000
CONS_MEMORY_CAPACITY = 2500
BATCH_SIZE = 128
labda=10.
RENDER = True
tol = 0.001
# ENV_NAME = 'CartPole-v2'
env = dreamer()
# env = gym.make(ENV_NAME)
env = env.unwrapped
# For analyse
EWMA_p=0.95
EWMA_step=np.zeros((1,MAX_EPISODES+1))
EWMA_reward=np.zeros((1,MAX_EPISODES+1))
iteration=np.zeros((1,MAX_EPISODES+1))
# Training setting
var = 5 # control exploration
t1 = time.time()
max_reward=0
max_ewma_reward=0
############################### DDPG ####################################
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,Lyapunov_switch):
############################### Model parameters ####################################
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 2), dtype=np.float32)
self.cons_memory = np.zeros((CONS_MEMORY_CAPACITY, s_dim * 2 + a_dim + 2), dtype=np.float32)
self.pointer = 0
self.cons_pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.cons_S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.cons_S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.l_R = tf.placeholder(tf.float32, [None, 1], 'l_r') # 给lyapunov设计的reward
self.LR_A = tf.placeholder(tf.float32, None, 'LR_A')
self.LR_C = tf.placeholder(tf.float32, None, 'LR_C')
self.LR_L = tf.placeholder(tf.float32, None, 'LR_L')
self.labda = tf.placeholder(tf.float32, None, 'Lambda')
self.a = self._build_a(self.S, ) # 这个网络用于及时更新参数
self.q = self._build_c(self.S, self.a) # 这个网络是用于及时更新参数
self.l = self._build_l(self.S, self.a) # lyapunov 网络
self.ly_switch=Lyapunov_switch
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Critic')
l_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Lyapunov')
############################### Model Learning Setting ####################################
ema = tf.train.ExponentialMovingAverage(decay=1 - TAU) # soft replacement
def ema_getter(getter, name, *args, **kwargs):
return ema.average(getter(name, *args, **kwargs))
target_update = [ema.apply(a_params), ema.apply(c_params),ema.apply(l_params)] # soft update operation
# 这个网络不及时更新参数, 用于预测 Critic 的 Q_target 中的 action
a_ = self._build_a(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters
cons_a = self._build_a(self.cons_S, reuse=True)
cons_a_ = self._build_a(self.cons_S_, reuse=True)
# 这个网络不及时更新参数, 用于给出 Actor 更新参数时的 Gradient ascent 强度
q_ = self._build_c(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
l_ = self._build_l(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
self.cons_l = self._build_l(self.cons_S, tf.stop_gradient(cons_a), reuse=True)
self.cons_l_ = self._build_l(self.cons_S_, cons_a_, reuse=True)
ALPHA3=0.1
self.l_lambda = tf.reduce_mean(self.cons_l_ - self.cons_l+ ALPHA3 * self.l_R)
if self.ly_switch == True :
a_loss = self.labda * self.l_lambda - tf.reduce_mean(self.q)
else:
a_loss = -tf.reduce_mean(self.q)
self.atrain = tf.train.AdamOptimizer(self.LR_A).minimize(a_loss,var_list=a_params) #以learning_rate去训练,方向是minimize loss,调整列表参数,用adam
with tf.control_dependencies(target_update): # soft replacement happened at here
q_target = self.R + GAMMA * q_ #ddpg
l_target = self.l_R + GAMMA * l_ # Lyapunov critic
self.td_error = tf.losses.mean_squared_error(labels=q_target, predictions=self.q)
self.l_error = tf.losses.mean_squared_error(labels=l_target, predictions=self.l)
self.ctrain = tf.train.AdamOptimizer(self.LR_C).minimize(self.td_error, var_list=c_params)
self.ltrain = tf.train.AdamOptimizer(self.LR_L).minimize(self.l_error, var_list=l_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
def choose_action(self, s):
return self.sess.run(self.a, {self.S: s[np.newaxis, :]})[0]
def learn(self, LR_A, LR_C,LR_L, labda):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim] # state
ba = bt[:, self.s_dim: self.s_dim + self.a_dim] # action
br = bt[:, -self.s_dim - 2: -self.s_dim - 1] # reward
blr = bt[:, -self.s_dim - 1: -self.s_dim] # l_reward
bs_ = bt[:, -self.s_dim:] # next state
# 边缘的 s a s_ l_r
indices = np.random.choice(CONS_MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.cons_memory[indices, :]
cons_bs = bt[:, :self.s_dim]
cons_ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
cons_bs_ = bt[:, -self.s_dim:]
cons_blr = bt[:, -self.s_dim - 1: -self.s_dim]
self.sess.run(self.atrain, {self.S: bs, self.S_: bs_, self.LR_A: LR_A, self.labda: labda, self.cons_S: cons_bs,
self.cons_S_: cons_bs_, self.l_R: cons_blr})
self.sess.run(self.ctrain,
{self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.LR_C: LR_C})
self.sess.run(self.ltrain,
{self.S: bs, self.a: ba, self.S_: bs_, self.l_R: blr, self.LR_L: LR_L})
return self.sess.run(self.l_lambda, {self.cons_S: cons_bs,
self.cons_S_: cons_bs_, self.l_R: cons_blr}), \
self.sess.run(self.td_error,
{self.S: bs, self.a: ba, self.R: br, self.S_: bs_}), \
self.sess.run(self.l_error, {self.S: cons_bs, self.a: cons_ba, self.S_: cons_bs_, self.l_R: cons_blr})
def store_transition(self, s, a, r, l_r, s_):
transition = np.hstack((s, a, [r], [l_r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
def store_edge_transition(self, s, a,r, l_r, s_):
"""把数据存入constraint buffer"""
transition = np.hstack((s, a,[r], [l_r], s_))
index = self.cons_pointer % CONS_MEMORY_CAPACITY # replace the old memory with new memory
self.cons_memory[index, :] = transition
self.cons_pointer += 1
#action 选择模块也是actor模块
def _build_a(self, s, reuse=None, custom_getter=None):
trainable = True
with tf.variable_scope('Actor', reuse=reuse, custom_getter=custom_getter):
net_0 = tf.layers.dense(s, 256, activation=tf.nn.relu, name='l1', trainable=trainable)#原始是30
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable) # 原始是30
a = tf.layers.dense(net_3, self.a_dim, activation=tf.nn.tanh, name='a', trainable=trainable)
return tf.multiply(a, self.a_bound, name='scaled_a')
#critic模块
def _build_c(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Critic', reuse=reuse, custom_getter=custom_getter):
n_l1 = 256#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 128, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
return tf.layers.dense(net_2, 1, trainable=trainable) # Q(s,a)
def _build_l(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Lyapunov', reuse=reuse, custom_getter=custom_getter):
n_l1 = 256#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 128, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
return tf.layers.dense(net_2, 1, trainable=trainable) # Q(s,a)
def save_result(self):
save_path = self.saver.save(self.sess, "Model/V8_.ckpt")
print("Save to path: ", save_path)
############################### training ####################################
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
Lyapunov=False
ddpg = DDPG(a_dim, s_dim, a_bound,Lyapunov)
lyapunov_error=100000
critic_error=100000
for i in range(MAX_EPISODES):
iteration[0,i+1]=i+1
s = env.reset()
ep_reward = 0
l_loss = np.nan
c_loss = np.nan
L_values = []
l_rewards = []
for j in range(MAX_EP_STEPS):
# Visulization
if RENDER:
env.render()
# Choose action
# Add exploration noise
a = ddpg.choose_action(s)
a = np.clip(np.random.normal(a, var), -a_bound, a_bound)
# Run in simulator
s_, r, done, hit = env.step(a)
#Lyapunov reward
r1 = max(abs(s_[0]) /10,1/2)
r2 = (abs(s_[2])/ env.theta_threshold_radians)
l_r= (20*r1)**2 +(20*r2)**2
l_rewards.append(l_r)
# print(r,l_r)
# 储存s,a和s_next,reward用于DDPG的学习
ddpg.store_transition(s, a,(r / 10), l_r/10, s_)
# 如果状态接近边缘 就存储到边缘memory里
if np.abs(s[0]) > 4.5: # or np.abs(s[2]) > env.theta_threshold_radians*0.8
ddpg.store_edge_transition(s, a, (r / 10), l_r / 10, s_)
# Learn
if Lyapunov:
if ddpg.pointer > MEMORY_CAPACITY and ddpg.cons_pointer > CONS_MEMORY_CAPACITY:
# Decay the action randomness
var *= .99999
l_q, c_loss, l_loss = ddpg.learn(LR_A, LR_C, LR_L,labda)
if l_q > tol:
if labda == 0:
labda = 1e-8
labda = min(labda * 2, 1e2)
if l_q < -tol:
labda = labda / 2
else:
if ddpg.pointer > MEMORY_CAPACITY:
# Decay the action randomness
var *= .99999
l_q, c_loss, l_loss = ddpg.learn(LR_A, LR_C, LR_L,0)
# 状态更新
s = s_
ep_reward += r
# OUTPUT TRAINING INFORMATION AND LEARNING RATE DECAY
if j == MAX_EP_STEPS - 1:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*ep_reward
print('Episode:', i, ' Reward: %.1f' % ep_reward, 'Explore: %.2f' % var, "good",
"EWMA_step = ", int(EWMA_step[0, i + 1]), "EWMA_reward = ", EWMA_reward[0, i + 1], "LR_A = ", LR_A, "LR_C = ", LR_C, "LR_L = ", LR_L,
'lambda', labda,
'lyapunov_error:', l_loss, 'critic_error:', c_loss)
if EWMA_reward[0,i+1]>max_ewma_reward:
max_ewma_reward=min(EWMA_reward[0,i+1],500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
LR_L *= .8 # learning rate for critic
ddpg.save_result()
if ep_reward> max_reward:
max_reward = min(ep_reward,500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
LR_L *= .8 # learning rate for critic
ddpg.save_result()
print("max_reward : ",ep_reward)
if l_loss<lyapunov_error:
lyapunov_error=l_loss
LR_L *=.9
if c_loss<critic_error:
critic_error=c_loss
LR_C *=.9
else:
LR_A *= .99
LR_C *= .99
LR_L *= .99
break
elif done:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*ep_reward
if hit==1:
print('Episode:', i, ' Reward: %.1f' % ep_reward, 'Explore: %.2f' % var, "break in : ", j, "due to ",
"hit the wall", "EWMA_step = ", int(EWMA_step[0, i + 1]), "EWMA_reward = ", EWMA_reward[0, i + 1],
"LR_A = ", LR_A, "LR_C = ", LR_C, "LR_L = ", LR_L, 'lambda', labda, 'lyapunov_error:', l_loss, 'critic_error:',
c_loss)
else:
print('Episode:', i, ' Reward: %.1f' % ep_reward, 'Explore: %.2f' % var, "break in : ", j, "due to",
"fall down", "EWMA_step = ", int(EWMA_step[0, i + 1]), "EWMA_reward = ", EWMA_reward[0, i + 1],
"LR_A = ", LR_A, "LR_C = ", LR_C, "LR_L = ", LR_L, 'lambda', labda, 'lyapunov_error:', l_loss, 'critic_error:',
c_loss)
break
print('Running time: ', time.time() - t1)