-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
217 lines (174 loc) · 10 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import torch
class PointWiseFeedForward(torch.nn.Module):
def __init__(self, hidden_units, dropout_rate):
super(PointWiseFeedForward, self).__init__()
self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1) # equivallent to nn.linear layer
self.dropout1 = torch.nn.Dropout(p=dropout_rate) # where should we put this dropout layer?
self.relu = torch.nn.ReLU() # not gelu?
self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
self.dropout2 = torch.nn.Dropout(p=dropout_rate)
def forward(self, inputs):
outputs = self.dropout2(self.conv2(self.relu(self.dropout1(self.conv1(inputs.transpose(-1, -2))))))
outputs = outputs.transpose(-1, -2) # as Conv1D requires (N, C, Length) Note: len = 1, C = hidden_units
outputs += inputs
return outputs
# pls use the following self-made multihead attention layer
# in case your pytorch version is below 1.16 or for other reasons
# https://github.com/pmixer/TiSASRec.pytorch/blob/master/model.py
class SASRec(torch.nn.Module):
def __init__(self, user_num, item_num, args):
super(SASRec, self).__init__()
self.user_num = user_num
self.item_num = item_num
self.dev = args.device
self.hidden_units = args.hidden_units
# TODO: loss += args.l2_emb for regularizing embedding vectors during training
# https://stackoverflow.com/questions/42704283/adding-l1-l2-regularization-in-pytorch
self.item_emb = torch.nn.Embedding(self.item_num+1, args.hidden_units, padding_idx=item_num) # attention! padding_idx is item_num, not 0 in metro project
self.pos_emb = torch.nn.Embedding(args.max_seq_len, args.hidden_units) # TO IMPROVE how?
self.emb_dropout = torch.nn.Dropout(p=args.dropout_rate)
self.attention_layernorms = torch.nn.ModuleList() # to be Q for self-attention
self.attention_layers = torch.nn.ModuleList()
self.forward_layernorms = torch.nn.ModuleList()
self.forward_layers = torch.nn.ModuleList()
self.last_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)
for _ in range(args.num_blocks):
new_attn_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)
self.attention_layernorms.append(new_attn_layernorm)
new_attn_layer = torch.nn.MultiheadAttention(
args.hidden_units,
args.num_heads,
args.dropout_rate)
self.attention_layers.append(new_attn_layer)
new_fwd_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)
self.forward_layernorms.append(new_fwd_layernorm)
new_fwd_layer = PointWiseFeedForward(args.hidden_units, args.dropout_rate)
self.forward_layers.append(new_fwd_layer)
# self.pos_sigmoid = torch.nn.Sigmoid()
# self.neg_sigmoid = torch.nn.Sigmoid()
def seq2embed(self, input_seqs):
'''
input_seqs: (U, T) where U is user_num, T is maxlen. so this is purchase history of users
(item Recommendation)
input_seqs: (user_num, Basket_num, item_num) (next basket recommendation)
'''
# assert the vector of padding_idx is all zeros
#assert (self.item_emb.weight.data[self.item_num] == torch.zeros(self.hidden_units)).to(self.dev).all(), "the vector of padding_idx is not all zeros, damn it!"
# generate mask for log_seqs: cretiria: 1.size is (user_num, basket_num) 2.2. mask if the first item index is item_num. (this means the basket is a padded one)
input_seqs = torch.LongTensor(input_seqs).to(self.dev)
# english version: timeline_mask is the complement of the mask that set the padded item/basket to 0. timeline_mask itself will be fed to attention as key_padding_mask
timeline_mask_bool = torch.where(input_seqs[:, :, 0] == self.item_num, True, False).to(self.dev)
timeline_mask_float = torch.where(timeline_mask_bool, -1*(2e32 - 1), 0).to(self.dev) # (U, T)
seqs = self.item_emb(input_seqs)
'''
tensor(
[
[ True, True,....,True, False]
[ True, True,....,False,False]
.....
]
)
'''
# take average of item embeddings as basket embedding
temp_mask = torch.where(input_seqs == self.item_num, 0, 1).to(self.dev) # (U, T)
actual_basket_item_num = torch.sum(temp_mask, dim = -1) # (U, )
actual_basket_item_num = torch.where(actual_basket_item_num == 0, 1, actual_basket_item_num).to(self.dev)
seqs = torch.sum(seqs, dim = -2) / actual_basket_item_num.unsqueeze(-1)
seqs *= self.item_emb.embedding_dim ** 0.5 # necessity? introduced by transformer paper, but not understood yet
# positions is for positional enbedding index.
positions = np.tile(np.array(range(input_seqs.shape[1])), [input_seqs.shape[0], 1])
seqs += self.pos_emb(torch.LongTensor(positions).to(self.dev))
seqs = self.emb_dropout(seqs)
seqs *= ~timeline_mask_bool.unsqueeze(-1)
# english version: broad cast in last dim necessary? (yes. because it becomes embedding.)
number_baskets = seqs.shape[1]
# causal mask
attention_mask = torch.triu(torch.zeros((number_baskets, number_baskets),device=self.dev).fill_(-1*(2e32 - 1)), diagonal=1)# (T, T)
# Be careful: we can only use float mask instead of byte mask here.
# if we use byte mask and perform softmax operation on it later,
# the output of softmax will be nan, for the following reason:
'''
tensor([[0, -2e15, -2e15, -2e15, -2e15],
[0, 0, -2e15, -2e15, -2e15],
[0, 0, 0, -2e15, -2e15],
[0, 0, 0, 0, -2e15],
[0, 0, 0, 0, 0]])
'''
for i in range(len(self.attention_layers)):
s = seqs
seqs = self.attention_layernorms[i](seqs)
Q_K_V = torch.transpose(seqs, 0, 1)
mha_outputs, _ = self.attention_layers[i](
Q_K_V, Q_K_V, Q_K_V,
attn_mask=attention_mask,
key_padding_mask=timeline_mask_float, # work for torch 2.0, not for 1.12
# is_causal=True,
)
# need_weights=False) this arg do not work?
mha_outputs = torch.transpose(mha_outputs, 0, 1)
seqs = s + mha_outputs
sequences = self.forward_layernorms[i](seqs)
sequences = self.forward_layers[i](sequences)
seqs = seqs + sequences
# mask necessary? (yes...linear includes bias, lol, why am i so stupid)
# but still, if we offer attn_mask, this line seems to be redundant.
seqs *= ~timeline_mask_bool.unsqueeze(-1)
output_embedding = self.last_layernorm(seqs) # (U, T, C) -> (U, -1, C)
return output_embedding, ~timeline_mask_bool
def forward(self, input_seqs, labels, args):
'''
input_seqs: (U, T) where U is user_num, T is maxlen. so this is purchase history of users
(item Recommendation)
input_seqs: (user_num, Basket_num, item_num) (next basket recommendation)
labels = [
[1, 0,1,0],
[0, 1,1,1]
], dtype=torch.float32
loss_type: "sigmoid" or "softmax"
'''
#output: [batch_size, seq_len, emb_dim]
#loss mask: True if not padding, False if padding
''' example:
mask = torch.tensor(
[ [False, True, True, True], [True, False, False, True] ], dtype=torch.bool)
'''
output, loss_mask = self.seq2embed(input_seqs)
logits = torch.matmul(output, self.item_emb.weight[:-1].transpose(0, 1))
loss_mask_logits = loss_mask.unsqueeze(-1).repeat(1, 1, logits.shape[-1])
loss_type= args.loss
average = args.sig_loss_average
average6 = args.sig_loss_average6
if loss_type == "sigmoid":
criterion = torch.nn.BCEWithLogitsLoss(reduction = "none")
labels = torch.tensor(labels,dtype=torch.float32).to(self.dev)[:,:, :-1]
loss= criterion(logits, labels)
#loss = torch.sum(loss * loss_mask_logits)/ torch.sum(loss_mask_logits)
#loss = torch.sum(loss * loss_mask_logits)/ torch.sum(loss_mask) # this works better than the above line
loss = torch.sum(loss * loss_mask_logits) #this works similarly to the above line
if average:
loss = loss /torch.sum(loss_mask)
elif average6:
loss = loss /torch.sum(loss_mask_logits)
return loss, logits
elif loss_type == "softmax":
criterion = torch.nn.CrossEntropyLoss(reduction = "none")
assert len(logits.shape) == 3, "logits should be 3D"
# remove the last element of each multihot vector, because it is for the padding
labels = torch.tensor(labels,dtype=torch.float32).to(self.dev)[:,:, :-1]
# label should be floating point, not long
loss= criterion(logits.transpose(1, 2), labels.transpose(1, 2))
loss = torch.sum(loss * loss_mask) / torch.sum(loss_mask)
return loss, logits
def predict(self, input_seqs): # for inference
'''
input_seqs: (U, T) where U is user_num, T is maxlen. so this is purchase history of users
(item Recommendation)
input_seqs: (user_num, Basket_num, item_num) (next basket recommendation)
'''
with torch.no_grad():
output_embedding , _ = self.seq2embed(input_seqs)
logits = torch.matmul(output_embedding, self.item_emb.weight.transpose(0, 1))
# take the last embedding as the prediction
logits = logits[:, -1, :] # (U, num_items)
return logits.cpu().numpy() # preds # (U, num_items)