-
Notifications
You must be signed in to change notification settings - Fork 17
/
train_singlenet_tool.py
563 lines (480 loc) · 21.7 KB
/
train_singlenet_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torch.nn.init as init
from torchvision import models, transforms
from torch.utils.data import Dataset, DataLoader
from torch.nn import DataParallel
import os
from PIL import Image, ImageOps
import time
import pickle
import numpy as np
from torchvision.transforms import Lambda
import argparse
import copy
import random
import numbers
parser = argparse.ArgumentParser(description='cnn_lstm training')
parser.add_argument('-g', '--gpu', default=[0], nargs='+', type=int, help='index of gpu to use, default 2')
parser.add_argument('-s', '--seq', default=2, type=int, help='sequence length, default 4')
parser.add_argument('-t', '--train', default=100, type=int, help='train batch size, default 100')
parser.add_argument('-v', '--val', default=8, type=int, help='valid batch size, default 8')
parser.add_argument('-o', '--opt', default=1, type=int, help='0 for sgd 1 for adam, default 1')
parser.add_argument('-m', '--multi', default=1, type=int, help='0 for single opt, 1 for multi opt, default 1')
parser.add_argument('-e', '--epo', default=25, type=int, help='epochs to train and val, default 25')
parser.add_argument('-w', '--work', default=1, type=int, help='num of workers to use, default 2')
parser.add_argument('-f', '--flip', default=0, type=int, help='0 for not flip, 1 for flip, default 0')
parser.add_argument('-c', '--crop', default=1, type=int, help='0 rand, 1 cent, 5 five_crop, 10 ten_crop, default 1')
parser.add_argument('-l', '--lr', default=1e-3, type=float, help='learning rate for optimizer, default 1e-3')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum for sgd, default 0.9')
parser.add_argument('--weightdecay', default=5e-4, type=float, help='weight decay for sgd, default 0')
parser.add_argument('--dampening', default=0, type=float, help='dampening for sgd, default 0')
parser.add_argument('--nesterov', default=False, type=bool, help='nesterov momentum, default False')
parser.add_argument('--sgdadjust', default=1, type=int, help='sgd method adjust lr 0 for step 1 for min, default 1')
parser.add_argument('--sgdstep', default=5, type=int, help='number of steps to adjust lr for sgd, default 5')
parser.add_argument('--sgdgamma', default=0.1, type=float, help='gamma of steps to adjust lr for sgd, default 0.1')
args = parser.parse_args()
gpu_usg = ",".join(list(map(str, args.gpu)))
sequence_length = args.seq
train_batch_size = args.train
val_batch_size = args.val
optimizer_choice = args.opt
multi_optim = args.multi
epochs = args.epo
workers = args.work
use_flip = args.flip
crop_type = args.crop
learning_rate = args.lr
momentum = args.momentum
weight_decay = args.weightdecay
dampening = args.dampening
use_nesterov = args.nesterov
sgd_adjust_lr = args.sgdadjust
sgd_step = args.sgdstep
sgd_gamma = args.sgdgamma
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_usg
num_gpu = torch.cuda.device_count()
use_gpu = torch.cuda.is_available()
print('number of gpu : {:6d}'.format(num_gpu))
print('sequence length : {:6d}'.format(sequence_length))
print('train batch size: {:6d}'.format(train_batch_size))
print('valid batch size: {:6d}'.format(val_batch_size))
print('optimizer choice: {:6d}'.format(optimizer_choice))
print('multiple optim : {:6d}'.format(multi_optim))
print('num of epochs : {:6d}'.format(epochs))
print('num of workers : {:6d}'.format(workers))
print('test crop type : {:6d}'.format(crop_type))
print('whether to flip : {:6d}'.format(use_flip))
print('learning rate : {:.4f}'.format(learning_rate))
print('momentum for sgd: {:.4f}'.format(momentum))
print('weight decay : {:.4f}'.format(weight_decay))
print('dampening : {:.4f}'.format(dampening))
print('use nesterov : {:6d}'.format(use_nesterov))
print('method for sgd : {:6d}'.format(sgd_adjust_lr))
print('step for sgd : {:6d}'.format(sgd_step))
print('gamma for sgd : {:.4f}'.format(sgd_gamma))
def pil_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
class RandomCrop(object):
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.count = 0
def __call__(self, img):
if self.padding > 0:
img = ImageOps.expand(img, border=self.padding, fill=0)
w, h = img.size
th, tw = self.size
if w == tw and h == th:
return img
random.seed(self.count // sequence_length)
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
# print(self.count, x1, y1)
self.count += 1
return img.crop((x1, y1, x1 + tw, y1 + th))
class RandomHorizontalFlip(object):
def __init__(self):
self.count = 0
def __call__(self, img):
seed = self.count // sequence_length
self.count += 1
random.seed(seed)
if random.random() < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img
class CholecDataset(Dataset):
def __init__(self, file_paths, file_labels, transform=None,
loader=pil_loader):
self.file_paths = file_paths
self.file_labels_1 = file_labels[:, range(7)]
self.file_labels_2 = file_labels[:, -1]
self.transform = transform
# self.target_transform=target_transform
self.loader = loader
def __getitem__(self, index):
img_names = self.file_paths[index]
labels_1 = self.file_labels_1[index]
labels_2 = self.file_labels_2[index]
imgs = self.loader(img_names)
if self.transform is not None:
imgs = self.transform(imgs)
return imgs, labels_1, labels_2
def __len__(self):
return len(self.file_paths)
class resnet_tool(torch.nn.Module):
def __init__(self):
super(resnet_tool, self).__init__()
resnet = models.resnet50(pretrained=True)
self.share = torch.nn.Sequential()
self.share.add_module("conv1", resnet.conv1)
self.share.add_module("bn1", resnet.bn1)
self.share.add_module("relu", resnet.relu)
self.share.add_module("maxpool", resnet.maxpool)
self.share.add_module("layer1", resnet.layer1)
self.share.add_module("layer2", resnet.layer2)
self.share.add_module("layer3", resnet.layer3)
self.share.add_module("layer4", resnet.layer4)
self.share.add_module("avgpool", resnet.avgpool)
self.lstm = nn.LSTM(2048, 512, batch_first=True, dropout=1)
self.fc = nn.Linear(512, 7)
self.fc2 = nn.Linear(2048, 7)
init.xavier_normal(self.lstm.all_weights[0][0])
init.xavier_normal(self.lstm.all_weights[0][1])
init.xavier_uniform(self.fc.weight)
init.xavier_uniform(self.fc2.weight)
def forward(self, x):
x = self.share.forward(x)
x = x.view(-1, 2048)
z = self.fc2(x)
return z
def get_useful_start_idx(sequence_length, list_each_length):
count = 0
idx = []
for i in range(len(list_each_length)):
for j in range(count, count + (list_each_length[i] + 1 - sequence_length)):
idx.append(j)
count += list_each_length[i]
return idx
def get_data(data_path):
with open(data_path, 'rb') as f:
train_test_paths_labels = pickle.load(f)
train_paths = train_test_paths_labels[0]
val_paths = train_test_paths_labels[1]
test_paths = train_test_paths_labels[2]
train_labels = train_test_paths_labels[3]
val_labels = train_test_paths_labels[4]
test_labels = train_test_paths_labels[5]
train_num_each = train_test_paths_labels[6]
val_num_each = train_test_paths_labels[7]
test_num_each = train_test_paths_labels[8]
print('train_paths : {:6d}'.format(len(train_paths)))
print('train_labels : {:6d}'.format(len(train_labels)))
print('valid_paths : {:6d}'.format(len(val_paths)))
print('valid_labels : {:6d}'.format(len(val_labels)))
print('test_paths : {:6d}'.format(len(test_paths)))
print('test_labels : {:6d}'.format(len(test_labels)))
train_labels = np.asarray(train_labels, dtype=np.int64)
val_labels = np.asarray(val_labels, dtype=np.int64)
test_labels = np.asarray(test_labels, dtype=np.int64)
if use_flip == 0:
train_transforms = transforms.Compose([
RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])
])
elif use_flip == 1:
train_transforms = transforms.Compose([
RandomCrop(224),
RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])
])
if crop_type == 0:
test_transforms = transforms.Compose([
RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])
])
elif crop_type == 1:
test_transforms = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])
])
elif crop_type == 5:
test_transforms = transforms.Compose([
transforms.FiveCrop(224),
Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
Lambda(
lambda crops: torch.stack(
[transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])(crop) for crop in crops]))
])
elif crop_type == 10:
test_transforms = transforms.Compose([
transforms.TenCrop(224),
Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
Lambda(
lambda crops: torch.stack(
[transforms.Normalize([0.3456, 0.2281, 0.2233], [0.2528, 0.2135, 0.2104])(crop) for crop in crops]))
])
train_dataset = CholecDataset(train_paths, train_labels, train_transforms)
val_dataset = CholecDataset(val_paths, val_labels, test_transforms)
test_dataset = CholecDataset(test_paths, test_labels, test_transforms)
return train_dataset, train_num_each, val_dataset, val_num_each, test_dataset, test_num_each
def train_model(train_dataset, train_num_each, val_dataset, val_num_each):
num_train = len(train_dataset)
num_val = len(val_dataset)
train_useful_start_idx = get_useful_start_idx(sequence_length, train_num_each)
val_useful_start_idx = get_useful_start_idx(sequence_length, val_num_each)
num_train_we_use = len(train_useful_start_idx) // num_gpu * num_gpu
num_val_we_use = len(val_useful_start_idx) // num_gpu * num_gpu
# num_train_we_use = 4
# num_val_we_use = 800
train_we_use_start_idx = train_useful_start_idx[0:num_train_we_use]
val_we_use_start_idx = val_useful_start_idx[0:num_val_we_use]
train_idx = []
for i in range(num_train_we_use):
for j in range(sequence_length):
train_idx.append(train_we_use_start_idx[i] + j)
val_idx = []
for i in range(num_val_we_use):
for j in range(sequence_length):
val_idx.append(val_we_use_start_idx[i] + j)
num_train_all = len(train_idx)
num_val_all = len(val_idx)
print('num train start idx : {:6d}'.format(len(train_useful_start_idx)))
print('last idx train start: {:6d}'.format(train_useful_start_idx[-1]))
print('num of train dataset: {:6d}'.format(num_train))
print('num of train we use : {:6d}'.format(num_train_we_use))
print('num of all train use: {:6d}'.format(num_train_all))
print('num valid start idx : {:6d}'.format(len(val_useful_start_idx)))
print('last idx valid start: {:6d}'.format(val_useful_start_idx[-1]))
print('num of valid dataset: {:6d}'.format(num_val))
print('num of valid we use : {:6d}'.format(num_val_we_use))
print('num of all valid use: {:6d}'.format(num_val_all))
train_loader = DataLoader(
train_dataset,
batch_size=train_batch_size,
sampler=train_idx,
num_workers=workers,
pin_memory=False
)
print('!!!')
val_loader = DataLoader(
val_dataset,
batch_size=val_batch_size,
sampler=val_idx,
num_workers=workers,
pin_memory=False
)
model = resnet_tool()
sig_f = nn.Sigmoid()
if use_gpu:
model = model.cuda()
sig_f = sig_f.cuda()
model = DataParallel(model)
criterion_1 = nn.BCEWithLogitsLoss(size_average=False)
criterion_2 = nn.CrossEntropyLoss(size_average=False)
if multi_optim == 0:
if optimizer_choice == 0:
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=use_nesterov)
if sgd_adjust_lr == 0:
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=sgd_adjust_lr, gamma=sgd_gamma)
elif sgd_adjust_lr == 1:
exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
elif optimizer_choice == 1:
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
elif multi_optim == 1:
if optimizer_choice == 0:
optimizer = optim.SGD([
{'params': model.module.share.parameters()},
{'params': model.module.lstm.parameters(), 'lr': learning_rate},
{'params': model.module.fc.parameters(), 'lr': learning_rate},
{'params': model.module.fc2.parameters(), 'lr': learning_rate},
], lr=learning_rate / 10, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=use_nesterov)
if sgd_adjust_lr == 0:
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=sgd_adjust_lr, gamma=sgd_gamma)
elif sgd_adjust_lr == 1:
exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
elif optimizer_choice == 1:
optimizer = optim.Adam([
{'params': model.module.share.parameters()},
{'params': model.module.lstm.parameters(), 'lr': learning_rate},
{'params': model.module.fc.parameters(), 'lr': learning_rate},
{'params': model.module.fc2.parameters(), 'lr': learning_rate},
], lr=learning_rate / 10)
best_model_wts = copy.deepcopy(model.state_dict())
best_val_accuracy_1 = 0.0
best_val_accuracy_2 = 0.0 # judge by accu2
correspond_train_acc_1 = 0.0
correspond_train_acc_2 = 0.0
record_np = np.zeros([epochs, 8])
for epoch in range(epochs):
print('!!! epoch:', epoch)
# np.random.seed(epoch)
np.random.shuffle(train_we_use_start_idx)
train_idx = []
for i in range(num_train_we_use):
for j in range(sequence_length):
train_idx.append(train_we_use_start_idx[i] + j)
train_loader = DataLoader(
train_dataset,
batch_size=train_batch_size,
sampler=train_idx,
num_workers=workers,
pin_memory=False
)
model.train()
train_loss_1 = 0.0
train_loss_2 = 0.0
train_corrects_1 = 0
train_corrects_2 = 0
train_start_time = time.time()
for data in train_loader:
inputs, labels_1, labels_2 = data
if use_gpu:
inputs = Variable(inputs.cuda())
labels_1 = Variable(labels_1.cuda())
#labels_2 = Variable(labels_2.cuda())
else:
inputs = Variable(inputs)
labels_1 = Variable(labels_1)
#labels_2 = Variable(labels_2)
optimizer.zero_grad()
outputs_1 = model.forward(inputs)
#_, preds_2 = torch.max(outputs_2.data, 1)
sig_out = sig_f(outputs_1.data)
preds_1 = torch.ByteTensor(sig_out.cpu() > 0.5)
preds_1 = preds_1.long()
train_corrects_1 += torch.sum(preds_1 == labels_1.data.cpu())
labels_1 = Variable(labels_1.data.float())
loss_1 = criterion_1(outputs_1, labels_1)
#loss_2 = criterion_2(outputs_2, labels_2)
loss = loss_1
loss.backward()
optimizer.step()
train_loss_1 += loss_1.data[0]
#train_loss_2 += loss_2.data[0]
#train_corrects_2 += torch.sum(preds_2 == labels_2.data)
train_elapsed_time = time.time() - train_start_time
train_accuracy_1 = train_corrects_1 / num_train_all / 7
#train_accuracy_2 = train_corrects_2 / num_train_all
train_average_loss_1 = train_loss_1 / num_train_all / 7
#train_average_loss_2 = train_loss_2 / num_train_all
# begin eval
model.eval()
val_loss_1 = 0.0
#val_loss_2 = 0.0
val_corrects_1 = 0
#val_corrects_2 = 0
val_start_time = time.time()
for data in val_loader:
inputs, labels_1, labels_2 = data
labels_2 = labels_2[(sequence_length - 1):: sequence_length]
if use_gpu:
inputs = Variable(inputs.cuda(), volatile=True)
labels_1 = Variable(labels_1.cuda(), volatile=True)
labels_2 = Variable(labels_2.cuda(), volatile=True)
else:
inputs = Variable(inputs, volatile=True)
labels_1 = Variable(labels_1, volatile=True)
labels_2 = Variable(labels_2, volatile=True)
if crop_type == 0 or crop_type == 1:
outputs_1 = model.forward(inputs)
elif crop_type == 5:
inputs = inputs.permute(1, 0, 2, 3, 4).contiguous()
inputs = inputs.view(-1, 3, 224, 224)
outputs_1 = model.forward(inputs)
outputs_1 = outputs_1.view(5, -1, 7)
outputs_1 = torch.mean(outputs_1, 0)
#outputs_2 = outputs_2.view(5, -1, 7)
#outputs_2 = torch.mean(outputs_2, 0)
elif crop_type == 10:
inputs = inputs.permute(1, 0, 2, 3, 4).contiguous()
inputs = inputs.view(-1, 3, 224, 224)
outputs_1 = model.forward(inputs)
outputs_1 = outputs_1.view(10, -1, 7)
outputs_1 = torch.mean(outputs_1, 0)
#outputs_2 = outputs_2.view(10, -1, 7)
#outputs_2 = torch.mean(outputs_2, 0)
#outputs_2 = outputs_2[sequence_length - 1::sequence_length]
#_, preds_2 = torch.max(outputs_2.data, 1)
sig_out = sig_f(outputs_1.data)
preds_1 = torch.ByteTensor(sig_out.cpu() > 0.5)
preds_1 = preds_1.long()
val_corrects_1 += torch.sum(preds_1 == labels_1.data.cpu())
labels_1 = Variable(labels_1.data.float())
loss_1 = criterion_1(outputs_1, labels_1)
val_loss_1 += loss_1.data[0]
#loss_2 = criterion_2(outputs_2, labels_2)
#val_loss_2 += loss_2.data[0]
#val_corrects_2 += torch.sum(preds_2 == labels_2.data)
val_elapsed_time = time.time() - val_start_time
val_accuracy_1 = val_corrects_1 / (num_val_all * 7)
#val_accuracy_2 = val_corrects_2 / num_val_we_use
val_average_loss_1 = val_loss_1 / (num_val_all * 7)
#val_average_loss_2 = val_loss_2 / num_val_we_use
print('epoch: {:4d}'
' train time: {:2.0f}m{:2.0f}s'
' train loss_1: {:4.4f}'
' train accu_1: {:.4f}'
' valid time: {:2.0f}m{:2.0f}s'
' valid loss_1: {:4.4f}'
' valid accu_1: {:.4f}'
.format(epoch,
train_elapsed_time // 60,
train_elapsed_time % 60,
train_average_loss_1,
train_accuracy_1,
val_elapsed_time // 60,
val_elapsed_time % 60,
val_average_loss_1,
val_accuracy_1))
if optimizer_choice == 0:
if sgd_adjust_lr == 0:
exp_lr_scheduler.step()
elif sgd_adjust_lr == 1:
exp_lr_scheduler.step(val_average_loss_1)
if val_accuracy_1 > 0.95:
if val_accuracy_1 > best_val_accuracy_1:
correspond_train_acc_1 = train_accuracy_1
best_model_wts = copy.deepcopy(model.state_dict())
record_np[epoch, 0] = train_accuracy_1
record_np[epoch, 2] = train_average_loss_1
record_np[epoch, 4] = val_accuracy_1
record_np[epoch, 6] = val_average_loss_1
print('best accuracy_1: {:.4f} cor train accu_1: {:.4f}'.format(best_val_accuracy_1, correspond_train_acc_1))
save_val_1 = int("{:4.0f}".format(best_val_accuracy_1 * 10000))
save_train_1 = int("{:4.0f}".format(correspond_train_acc_1 * 10000))
public_name = "cnn_lstm" \
+ "_epoch_" + str(epochs) \
+ "_length_" + str(sequence_length) \
+ "_opt_" + str(optimizer_choice) \
+ "_mulopt_" + str(multi_optim) \
+ "_flip_" + str(use_flip) \
+ "_crop_" + str(crop_type) \
+ "_batch_" + str(train_batch_size) \
+ "_train1_" + str(save_train_1) \
+ "_val1_" + str(save_val_1)
model_name = public_name + ".pth"
torch.save(best_model_wts, model_name)
record_name = public_name + ".npy"
np.save(record_name, record_np)
def main():
train_dataset, train_num_each, val_dataset, val_num_each, _, _ = get_data('train_val_test_paths_labels.pkl')
train_model(train_dataset, train_num_each, val_dataset, val_num_each)
if __name__ == "__main__":
main()
print('Done')
print()