forked from chaovven/PyRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
117 lines (90 loc) · 4.44 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os.path
from utils.eval_policy import eval_policy
import numpy as np
import pprint
from tensorboardX import SummaryWriter
from learners import REGISTRY as L_REGISTRY
from components.action_selectors import REGISTRY as A_REGISTRY
from types import SimpleNamespace as SN
from utils.rl_utils import *
from components.one_hot import one_hot
from components.episode_buffer import EpisodeBuffer
def run(_run, _config, _log, env):
# check args sanity
_config = args_sanity_check(_config, _log)
args = SN(**_config) # args['example'] -> args.example
args.device = "cuda" if args.use_cuda else "cpu"
# show parameters in console
_log.info("Experiment Parameters:")
experiment_params = pprint.pformat(_config,
indent=4,
width=1)
_log.info("\n\n" + experiment_params + "\n")
# ------------------- setup tensorboard -------------------
if args.use_tensorboard:
writer = SummaryWriter(log_dir=args.tb_path)
# ------------------- setup learner -------------------
learner = L_REGISTRY[args.learner](args, writer) # algorithm
if args.use_cuda:
learner.cuda()
# ------------------- load models -------------------
if args.load_model_path is not "": # load model if 'checkpoints' specified
if not os.path.isdir(args.load_model_path):
raise ValueError("Not a directory: " + args.load_model_path)
learner.load_models(args.load_model_path)
# -------------- setup action selector --------------
action_selector = A_REGISTRY[args.action_selector](args, writer) # action selector
# ------------------- setup buffer -------------------
ep_buffer = EpisodeBuffer(args)
ep_data = ep_buffer.new_empty_batch()
t_env_old = -args.log_interval - 1 # log the first run
# ------------------- collect trajectories -------------------
s0, ep_num, ep_t, ep_reward, model_saved_time = env.reset(), 0, 0, 0, 0
for t_env in range(int(args.max_timesteps)):
# save models
if args.save_model and (t_env - model_saved_time >= args.model_save_interval or model_saved_time == 0):
# model saved in "{args.tb_path}/models/{t_env}"
model_save_path = os.path.join(args.tb_path, "models", str(t_env))
os.makedirs(model_save_path, exist_ok=True)
learner.save_models(model_save_path)
model_saved_time = t_env
# chose action
if t_env < args.start_timesteps: # use random policy if no sufficient transitions collected
a0 = np.array(env.action_space.sample())
else:
a0 = action_selector.select_action(learner.forward(s0), t_env, train_mode=True)
s1, r1, done, _ = env.step(a0)
ep_data['state'][:, ep_t] = th.tensor(s0).view(1, -1)
ep_data['action'][:, ep_t] = th.tensor(a0).view(1, -1)
ep_data['reward'][:, ep_t] = th.tensor(r1).view(1, -1)
if args.buf_act_logprob:
ep_data['log_prob'][:, ep_t] = action_selector.log_prob.view(1, -1)
s0 = s1
ep_t += 1
ep_reward += r1
if done:
print(f"Episode {ep_num + 1}: reward = {ep_reward:.3f}, timestep = {t_env + 1}")
# log reward for both training and testing
if t_env - t_env_old >= args.log_interval:
writer.add_scalar("train/reward", ep_reward, t_env + 1)
eval_reward, eval_buf = eval_policy(learner, action_selector, args)
writer.add_scalar("test/reward", eval_reward, t_env + 1)
t_env_old = t_env
ep_data['done'][:, ep_t - 1] = th.tensor(1) # -1 as ep_t+=1 before
ep_data['mask'][:, ep_t:] = th.tensor(0)
ep_buffer.update(ep_data) # insert into the replay buffer
# reset counters, env and create new empty batch
ep_num += 1
ep_reward = 0
ep_t = 0
s0, done = env.reset(), False
ep_data = ep_buffer.new_empty_batch()
# train policy when sufficient episodes are collected
if t_env >= args.start_timesteps and ep_buffer._len() >= args.batch_size:
batch_samples = ep_buffer.sample(args.batch_size)
learner.train(batch_samples, t_env)
# if on policy, clear the replay buffer
if args.buffer_size == args.batch_size:
ep_buffer.clear()
env.close()
print("Exiting Main")