-
Notifications
You must be signed in to change notification settings - Fork 0
/
RL_brain.py
282 lines (234 loc) · 11.5 KB
/
RL_brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
The DQN improvement: Prioritized Experience Replay (based on https://arxiv.org/abs/1511.05952)
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
Using:
Tensorflow: 1.0
gym: 0.8.0
"""
import numpy as np
import tensorflow as tf
np.random.seed(1)
tf.set_random_seed(1)
class SumTree(object):
"""
This SumTree code is a modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/SumTree.py
Story data with its priority in the tree.
"""
data_pointer = 0
def __init__(self, capacity):
self.capacity = capacity # for all priority values
self.tree = np.zeros(2 * capacity - 1)
# [--------------Parent nodes-------------][-------leaves to recode priority-------]
# size: capacity - 1 size: capacity
self.data = np.zeros(capacity, dtype=object) # for all transitions
# [--------------data frame-------------]
# size: capacity
def add(self, p, data):
tree_idx = self.data_pointer + self.capacity - 1
self.data[self.data_pointer] = data # update data_frame
self.update(tree_idx, p) # update tree_frame
self.data_pointer += 1
if self.data_pointer >= self.capacity: # replace when exceed the capacity
self.data_pointer = 0
def update(self, tree_idx, p):
change = p - self.tree[tree_idx]
self.tree[tree_idx] = p
# then propagate the change through tree
while tree_idx != 0: # this method is faster than the recursive loop in the reference code
tree_idx = (tree_idx - 1) // 2
self.tree[tree_idx] += change
def get_leaf(self, v):
"""
Tree structure and array storage:
Tree index:
0 -> storing priority sum
/ \
1 2
/ \ / \
3 4 5 6 -> storing priority for transitions
Array type for storing:
[0,1,2,3,4,5,6]
"""
parent_idx = 0
while True: # the while loop is faster than the method in the reference code
cl_idx = 2 * parent_idx + 1 # this leaf's left and right kids
cr_idx = cl_idx + 1
if cl_idx >= len(self.tree): # reach bottom, end search
leaf_idx = parent_idx
break
else: # downward search, always search for a higher priority node
if v <= self.tree[cl_idx]:
parent_idx = cl_idx
else:
v -= self.tree[cl_idx]
parent_idx = cr_idx
data_idx = leaf_idx - self.capacity + 1
return leaf_idx, self.tree[leaf_idx], self.data[data_idx]
@property
def total_p(self):
return self.tree[0] # the root
class Memory(object): # stored as ( s, a, r, s_ ) in SumTree
"""
This Memory class is modified based on the original code from:
https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
"""
epsilon = 0.01 # small amount to avoid zero priority
alpha = 0.6 # [0~1] convert the importance of TD error to priority
beta = 0.4 # importance-sampling, from initial value increasing to 1
beta_increment_per_sampling = 0.001
abs_err_upper = 1. # clipped abs error
def __init__(self, capacity):
self.tree = SumTree(capacity)
def store(self, transition):
max_p = np.max(self.tree.tree[-self.tree.capacity:])
if max_p == 0:
max_p = self.abs_err_upper
self.tree.add(max_p, transition) # set the max p for new p
def sample(self, n):
b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, self.tree.data[0].size)), np.empty((n, 1))
pri_seg = self.tree.total_p / n # priority segment
self.beta = np.min([1., self.beta + self.beta_increment_per_sampling]) # max = 1
min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_p # for later calculate ISweight
for i in range(n):
a, b = pri_seg * i, pri_seg * (i + 1)
v = np.random.uniform(a, b)
idx, p, data = self.tree.get_leaf(v)
prob = p / self.tree.total_p
ISWeights[i, 0] = np.power(prob/min_prob, -self.beta)
b_idx[i], b_memory[i, :] = idx, data
return b_idx, b_memory, ISWeights
def batch_update(self, tree_idx, abs_errors):
abs_errors += self.epsilon # convert to abs and avoid 0
clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
ps = np.power(clipped_errors, self.alpha)
for ti, p in zip(tree_idx, ps):
self.tree.update(ti, p)
class DQNPrioritizedReplay:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.005,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=500,
memory_size=10000,
batch_size=32,
e_greedy_increment=None,
output_graph=False,
prioritized=True,
sess=None,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.prioritized = prioritized # decide to use double q or not
self.learn_step_counter = 0
self._build_net()
t_params = tf.get_collection('target_net_params')
e_params = tf.get_collection('eval_net_params')
self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
if self.prioritized:
self.memory = Memory(capacity=memory_size)
else:
self.memory = np.zeros((self.memory_size, n_features*2+2))
if sess is None:
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
else:
self.sess = sess
if output_graph:
tf.summary.FileWriter("logs/", self.sess.graph)
self.cost_his = []
def _build_net(self):
def build_layers(s, c_names, n_l1, w_initializer, b_initializer, trainable):
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names, trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names, trainable=trainable)
l1 = tf.nn.relu(tf.matmul(s, w1) + b1)
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names, trainable=trainable)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names, trainable=trainable)
out = tf.matmul(l1, w2) + b2
return out
# ------------------ build evaluate_net ------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
if self.prioritized:
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('eval_net'):
c_names, n_l1, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 20, \
tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
self.q_eval = build_layers(self.s, c_names, n_l1, w_initializer, b_initializer, True)
with tf.variable_scope('loss'):
if self.prioritized:
self.abs_errors = tf.reduce_sum(tf.abs(self.q_target - self.q_eval), axis=1) # for updating Sumtree
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.q_target, self.q_eval))
else:
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
# ------------------ build target_net ------------------
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
with tf.variable_scope('target_net'):
c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
self.q_next = build_layers(self.s_, c_names, n_l1, w_initializer, b_initializer, False)
def store_transition(self, s, a, r, s_):
if self.prioritized: # prioritized replay
transition = np.hstack((s, [a, r], s_))
self.memory.store(transition) # have high priority for newly arrived transition
else: # random replay
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
transition = np.hstack((s, [a, r], s_))
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition
self.memory_counter += 1
def choose_action(self, observation):
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
action = np.argmax(actions_value)
else:
action = np.random.randint(0, self.n_actions)
return action
def learn(self):
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.replace_target_op)
print('\ntarget_params_replaced\n')
if self.prioritized:
tree_idx, batch_memory, ISWeights = self.memory.sample(self.batch_size)
else:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
q_next, q_eval = self.sess.run(
[self.q_next, self.q_eval],
feed_dict={self.s_: batch_memory[:, -self.n_features:],
self.s: batch_memory[:, :self.n_features]})
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int)
reward = batch_memory[:, self.n_features + 1]
q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
if self.prioritized:
_, abs_errors, self.cost = self.sess.run([self._train_op, self.abs_errors, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target,
self.ISWeights: ISWeights})
self.memory.batch_update(tree_idx, abs_errors) # update priority
else:
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target})
self.cost_his.append(self.cost)
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1