-
Notifications
You must be signed in to change notification settings - Fork 34
/
example.py
186 lines (165 loc) · 9.12 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import json
from argparse import ArgumentParser
import torch
import os
import json
from tqdm import tqdm
from PIL import Image
import math
import multiprocessing
from multiprocessing import Pool, Queue, Manager
# TODO model packages import
# from transformers import AutoModelForCausalLM, AutoTokenizer
def split_list(lst, n):
length = len(lst)
avg = length // n # 每份的大小
result = [] # 存储分割后的子列表
for i in range(n - 1):
result.append(lst[i*avg:(i+1)*avg])
result.append(lst[(n-1)*avg:])
return result
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file,indent=4)
def _get_args():
parser = ArgumentParser()
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
parser.add_argument("--output_folder", type=str, default="./results")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
parser.add_argument("--model_path", type=str, default="")#TODO Set the address of your model's weights
parser.add_argument("--save_name", type=str, default="") #TODO Set the name of the JSON file you save in the output_folder.
parser.add_argument("--num_workers", type=int, default=8)
args = parser.parse_args()
return args
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
def eval_worker(args, data, eval_id, output_queue):
print(f"Process {eval_id} start.")
checkpoint = args.model_path
# TODO model init
# model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda', trust_remote_code=True).eval()
# tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
# tokenizer.padding_side = 'left'
# tokenizer.pad_token_id = tokenizer.eod_id
for i in tqdm(range(len(data))):
img_path = os.path.join(args.image_folder, data[i]['image_path'])
qs = data[i]['question']
# TODO Generation process
# query = f'<img>{img_path}</img> {qs} Answer: '
# input_ids = tokenizer(query, return_tensors='pt', padding='longest')
# attention_mask = input_ids.attention_mask
# input_ids = input_ids.input_ids
# pred = model.generate(
# input_ids=input_ids.to(f'cuda:{eval_id}'),
# attention_mask=attention_mask.to(f'cuda:{eval_id}'),
# do_sample=False,
# num_beams=1,
# max_new_tokens=100,
# min_new_tokens=1,
# length_penalty=1,
# num_return_sequences=1,
# output_hidden_states=True,
# use_cache=True,
# pad_token_id=tokenizer.eod_id,
# eos_token_id=tokenizer.eod_id,
# )
# response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
data[i]['predict'] = response
output_queue.put({eval_id: data})
print(f"Process {eval_id} has completed.")
if __name__=="__main__":
multiprocessing.set_start_method('spawn')
args = _get_args()
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
else:
data_path = args.OCRBench_file
with open(data_path, "r") as f:
data = json.load(f)
data_list = split_list(data, args.num_workers)
output_queue = Manager().Queue()
pool = Pool(processes=args.num_workers)
for i in range(len(data_list)):
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
pool.close()
pool.join()
results = {}
while not output_queue.empty():
result = output_queue.get()
results.update(result)
data = []
for i in range(len(data_list)):
data.extend(results[i])
for i in range(len(data)):
data_type = data[i]["type"]
dataset_name = data[i]["dataset_name"]
answers = data[i]["answers"]
if data[i].get('predict',0)==0:
continue
predict = data[i]['predict']
data[i]['result'] = 0
if dataset_name == "HME100k":
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answers in predict:
data[i]['result'] = 1
else:
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answers in predict:
data[i]['result'] = 1
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
if len(data)==1000:
for i in range(len(data)):
if data[i].get("result",100)==100:
continue
OCRBench_score[data[i]['type']] += data[i]['result']
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
print("###########################OCRBench##############################")
print(f"Text Recognition(Total 300):{recognition_score}")
print("------------------Details of Recognition Score-------------------")
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
print("----------------------------------------------------------------")
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
print("----------------------------------------------------------------")
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
print("----------------------------------------------------------------")
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
print("----------------------------------------------------------------")
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
print("----------------------Final Score-------------------------------")
print(f"Final Score(Total 1000): {Final_score}")
else:
for i in range(len(data)):
num_all[data[i]['dataset_name']] += 1
if data[i].get("result",100)==100:
continue
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
for key in AllDataset_score.keys():
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")