Skip to content

Latest commit

 

History

History
164 lines (122 loc) · 7.71 KB

README.md

File metadata and controls

164 lines (122 loc) · 7.71 KB

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of prompt-decoders, albeit with focus on open source LLMs compatible with FastChat (e.g., Vicuna, Zephyr, etc.). Some of the code in this repository is borrowed from RankGPT!

Releases

current_version = 0.12.8

📟 Instructions

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Install openjdk with maven if you want to use the retriever

conda install -c conda-forge openjdk=21 maven -y

Install Dependencies

pip install -r requirements.txt

Run end to end - RankZephyr

We can run the RankZephyr model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

Including the --vllm_batched flag will allow you to run the model in batched mode using the vllm library. If you want to run multiple passes of the model, you can use the --num_passes flag.

Run end to end - RankGPT4-o

We can run the RankGPT4-o model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=gpt-4o --top_k_candidates=100 --dataset=dl20 \
  --retrieval_method=bm25 --prompt_mode=rank_GPT_APEER  --context_size=4096 --use_azure_openai

Note that the --prompt_mode is set to rank_GPT_APEER to use the LLM refined prompt from APEER. This can be changed to rank_GPT to use the original prompt.

Run end to end - LiT5

We can run the LiT5-Distill V2 model (which could rerank 100 documents in a single pass) with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Distill-large-v2 --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5  --context_size=150 --vllm_batched --batch_size=4 \
    --variable_passages --window_size=100

We can run the LiT5-Distill original model (which works with a window size of 20) with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Distill-large --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5  --context_size=150 --vllm_batched --batch_size=32 \
    --variable_passages

We can run the LiT5-Score model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Score-large --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5 --context_size=150 --vllm_batched --batch_size=8 \
    --window_size=100 --variable_passages

If you would like to contribute to the project, please refer to the contribution guidelines.

🦙🐧 Model Zoo

The following is a table of our models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

LiT5 Suite

The following is a table specifically for our LiT5 suite of models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
LiT5 Distill base castorini/LiT5-Distill-base
LiT5 Distill large castorini/LiT5-Distill-large
LiT5 Distill xl castorini/LiT5-Distill-xl
LiT5 Distill base v2 castorini/LiT5-Distill-base-v2
LiT5 Distill large v2 castorini/LiT5-Distill-large-v2
LiT5 Distill xl v2 castorini/LiT5-Distill-xl-v2
LiT5 Score base castorini/LiT5-Score-base
LiT5 Score large castorini/LiT5-Score-large
LiT5 Score xl castorini/LiT5-Score-xl

Now you can run top-100 reranking with the v2 model in a single pass while maintaining efficiency!

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

If you use one of the LiT5 models please cite the following relevant paper:

[2312.16098] Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder Models

@ARTICLE{tamber2023scaling,
  title   = {Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder Models},
  author  = {Manveer Singh Tamber and Ronak Pradeep and Jimmy Lin},
  year    = {2023},
  journal = {arXiv preprint arXiv: 2312.16098}
}

🙏 Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.