forked from spcl/ncc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_task_classifyapp.py
484 lines (403 loc) · 21.4 KB
/
train_task_classifyapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# NCC: Neural Code Comprehension
# https://github.com/spcl/ncc
# Copyright 2018 ETH Zurich
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
# following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# ==============================================================================
"""Training workflow for app classification"""
from labm8 import fs
import task_utils
import rgx_utils as rgx
import pickle
from sklearn.utils import resample
import os
import numpy as np
import tensorflow as tf
import math
import struct
from keras import utils
from keras.callbacks import Callback
from absl import app
from absl import flags
# Parameters of classifyapp
flags.DEFINE_string('input_data', 'task/classifyapp', 'Path to input data')
flags.DEFINE_string('out', 'task/classifyapp', 'Path to folder in which to write saved Keras models and predictions')
flags.DEFINE_integer('num_epochs', 50, 'number of training epochs')
flags.DEFINE_integer('batch_size', 64, 'training batch size')
flags.DEFINE_integer('dense_layer', 32, 'dense layer size')
flags.DEFINE_integer('train_samples', 1500, 'Number of training samples per class')
flags.DEFINE_integer('vsamples', 0, 'Sampling on validation set')
flags.DEFINE_integer('save_every', 100, 'Save checkpoint every N batches')
flags.DEFINE_integer('ring_size', 5, 'Checkpoint ring buffer length')
flags.DEFINE_bool('print_summary', False, 'Print summary of Keras model')
FLAGS = flags.FLAGS
########################################################################################################################
# Utils
########################################################################################################################
def get_onehot(y, num_classes):
"""
y is a vector of numbers (1, number of classes)
"""
hot = np.zeros((len(y), num_classes), dtype=np.int32)
for i, c in enumerate(y):
# i: data sample index
# c: class number in range [1, 104]
hot[i][int(c) - 1] = 1
return hot
def encode_srcs(input_files, dataset_name, unk_index):
"""
encode and pad source code for learning
data_folder: folder from which to read input files
input_files: list of strings of file names
"""
# Get list of source file names
num_files = len(input_files)
num_unks = 0
seq_lengths = list()
print('\n--- Preparing to read', num_files, 'input files for', dataset_name, 'data set')
seqs = list()
for i, file in enumerate(input_files):
if i % 10000 == 0:
print('\tRead', i, 'files')
file = file.replace('.ll', '_seq.rec')
assert os.path.exists(file), 'input file not found: ' + file
with open(file, 'rb') as f:
full_seq = f.read()
seq = list()
for j in range(0, len(full_seq), 4): # read 4 bytes at a time
seq.append(struct.unpack('I', full_seq[j:j + 4])[0])
assert len(seq) > 0, 'Found empty file: ' + file
num_unks += seq.count(str(unk_index))
seq_lengths.append(len(seq))
seqs.append([int(s) for s in seq])
print('\tShortest sequence : {:>5}'.format(min(seq_lengths)))
maxlen = max(seq_lengths)
print('\tLongest sequence : {:>5}'.format(maxlen))
print('\tMean sequence length : {:>5} (rounded down)'.format(math.floor(np.mean(seq_lengths))))
print('\tNumber of \'UNK\' : {:>5}'.format(num_unks))
print('\tPercentage of \'UNK\' : {:>8.4} (% among all stmts)'.format((num_unks * 100) / sum(seq_lengths)))
print('\t\'UNK\' index : {:>5}'.format(unk_index))
return seqs, maxlen
def pad_src(seqs, maxlen, unk_index):
from keras.preprocessing.sequence import pad_sequences
encoded = np.array(pad_sequences(seqs, maxlen=maxlen, value=unk_index))
return np.vstack([np.expand_dims(x, axis=0) for x in encoded])
class EmbeddingSequence(utils.Sequence):
def __init__(self, batch_size, x_seq, y_1hot, embedding_mat):
self.batch_size = batch_size
self.num_samples = np.shape(x_seq)[0]
self.dataset_len = int(self.num_samples // self.batch_size)
self.x_seq = x_seq
self.y_1hot = y_1hot
self.emb = embedding_mat
# Make tf block less gpu memory
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self._set_index_array()
def _set_index_array(self):
self.index_array = np.random.permutation(self.num_samples)
x_seq2 = self.x_seq[self.index_array]
y_1hot2 = self.y_1hot[self.index_array]
self.x_seq = x_seq2
self.y_1hot = y_1hot2
def on_epoch_end(self):
self._set_index_array()
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
idx_begin, idx_end = self.batch_size * idx, self.batch_size * (idx + 1)
x = self.x_seq[idx_begin:idx_end]
emb_x = tf.nn.embedding_lookup(self.emb, x).eval(session=self.sess)
return emb_x, self.y_1hot[idx_begin:idx_end]
class EmbeddingPredictionSequence(utils.Sequence):
def __init__(self, batch_size, x_seq, embedding_mat):
self.batch_size = batch_size
self.x_seq = x_seq
self.dataset_len = int(np.shape(x_seq)[0] // self.batch_size)
self.emb = embedding_mat
# Make tf block less gpu memory
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
def __len__(self):
return self.dataset_len
def __getitem__(self, idx):
idx_begin, idx_end = self.batch_size * idx, self.batch_size * (idx + 1)
x = self.x_seq[idx_begin:idx_end]
emb_x = tf.nn.embedding_lookup(self.emb, x).eval(session=self.sess)
return emb_x
class WeightsSaver(Callback):
def __init__(self, model, save_every, ring_size):
self.model = model
self.save_every = save_every
self.ring_size = ring_size
self.batch = 0
self.ring = 0
def on_batch_end(self, batch, logs={}):
if self.batch % self.save_every == 0:
name = FLAGS.out + '/weights%d.h5' % self.ring
self.model.save_weights(name)
self.ring = (self.ring + 1) % self.ring_size
self.batch += 1
########################################################################################################################
# Model
########################################################################################################################
class NCC_classifyapp(object):
__name__ = "NCC_classifyapp"
__basename__ = "ncc_classifyapp"
def init(self, seed: int, maxlen: int, embedding_dim: int, num_classes: int, dense_layer_size: int):
from keras.layers import Input, LSTM, Dense
from keras.layers.normalization import BatchNormalization
from keras.models import Model
np.random.seed(seed)
# Keras model
inp = Input(shape=(maxlen, embedding_dim,), dtype="float32", name="code_in")
x = LSTM(embedding_dim, implementation=1, return_sequences=True, name="lstm_1")(inp)
x = LSTM(embedding_dim, implementation=1, name="lstm_2")(x)
# Heuristic model: outputs 1-of-num_classes prediction
x = BatchNormalization()(x)
x = Dense(dense_layer_size, activation="relu")(x)
outputs = Dense(num_classes, activation="sigmoid")(x)
self.model = Model(inputs=inp, outputs=outputs)
self.model.compile(
optimizer="adam",
loss="categorical_crossentropy",
metrics=['accuracy'])
print('\tbuilt Keras model')
def save(self, outpath: str):
self.model.save(outpath)
def restore(self, inpath: str):
from keras.models import load_model
self.model = load_model(inpath)
def train(self, sequences: np.array, y_1hot: np.array, sequences_val: np.array, y_1hot_val: np.array,
verbose: bool, epochs: int, batch_size: int) -> None:
self.model.fit(x=sequences, y=y_1hot, epochs=epochs, batch_size=batch_size, verbose=verbose, shuffle=True,
validation_data=(sequences_val, y_1hot_val))
def train_gen(self, train_generator: EmbeddingSequence, validation_generator: EmbeddingSequence,
verbose: bool, epochs: int) -> None:
checkpoint = WeightsSaver(self.model, FLAGS.save_every, FLAGS.ring_size)
try:
self.model.fit_generator(train_generator, epochs=epochs, verbose=verbose,
validation_data=validation_generator,
shuffle=True, callbacks=[checkpoint])
except KeyboardInterrupt:
print('Ctrl-C detected, saving weights to file')
self.model.save_weights(os.path.join(FLAGS.out, 'weights-kill.h5'))
def predict(self, sequences: np.array, batch_size: int) -> np.array:
# directly predict application class from source sequences:
p = np.array(self.model.predict(sequences, batch_size=batch_size, verbose=0)) # one-hot(range([0, 103]))
indices = [np.argmax(x) for x in p]
return [i + 1 for i in indices] # range(y): [1, 104], range(indices): [0, 103]
def predict_gen(self, generator: EmbeddingSequence) -> np.array:
# directly predict application class from source sequences:
p = np.array(self.model.predict_generator(generator, verbose=0)) # one-hot(range([0, 103]))
indices = [np.argmax(x) for x in p]
return [i + 1 for i in indices] # range(y): [1, 104], range(indices): [0, 103]
########################################################################################################################
# Evaluate
########################################################################################################################
def evaluate(model, embeddings, folder_data, samples_per_class, folder_results, dense_layer_size, print_summary,
num_epochs, batch_size):
# Set seed for reproducibility
seed = 204
####################################################################################################################
# Get data
vsamples_per_class = FLAGS.vsamples
# Data acquisition
num_classes = 104
y_train = np.empty(0) # training
X_train = list()
folder_data_train = os.path.join(folder_data, 'seq_train')
y_val = np.empty(0) # validation
X_val = list()
folder_data_val = os.path.join(folder_data, 'seq_val')
y_test = np.empty(0) # testing
X_test = list()
folder_data_test = os.path.join(folder_data, 'seq_test')
print('Getting file names for', num_classes, 'classes from folders:')
print(folder_data_train)
print(folder_data_val)
print(folder_data_test)
for i in range(1, num_classes + 1): # loop over classes
# training: Read data file names
folder = os.path.join(folder_data_train, str(i)) # index i marks the target class
assert os.path.exists(folder), "Folder: " + folder + ' does not exist'
print('\ttraining : Read file names from folder ', folder)
listing = os.listdir(folder + '/')
seq_files = [os.path.join(folder, f) for f in listing if f[-4:] == '.rec']
# training: Randomly pick programs
assert len(seq_files) >= samples_per_class, "Cannot sample " + str(samples_per_class) + " from " + str(
len(seq_files)) + " files found in " + folder
X_train += resample(seq_files, replace=False, n_samples=samples_per_class, random_state=seed)
y_train = np.concatenate([y_train, np.array([int(i)] * samples_per_class, dtype=np.int32)]) # i becomes target
# validation: Read data file names
folder = os.path.join(folder_data_val, str(i))
assert os.path.exists(folder), "Folder: " + folder + ' does not exist'
print('\tvalidation: Read file names from folder ', folder)
listing = os.listdir(folder + '/')
seq_files = [os.path.join(folder, f) for f in listing if f[-4:] == '.rec']
# validation: Randomly pick programs
if vsamples_per_class > 0:
assert len(seq_files) >= vsamples_per_class, "Cannot sample " + str(vsamples_per_class) + " from " + str(
len(seq_files)) + " files found in " + folder
X_val += resample(seq_files, replace=False, n_samples=vsamples_per_class, random_state=seed)
y_val = np.concatenate([y_val, np.array([int(i)] * vsamples_per_class, dtype=np.int32)])
else:
assert len(seq_files) > 0, "No .rec files found in" + folder
X_val += seq_files
y_val = np.concatenate([y_val, np.array([int(i)] * len(seq_files), dtype=np.int32)])
# test: Read data file names
folder = os.path.join(folder_data_test, str(i))
assert os.path.exists(folder), "Folder: " + folder + ' does not exist'
print('\ttest : Read file names from folder ', folder)
listing = os.listdir(folder + '/')
seq_files = [os.path.join(folder, f) for f in listing if f[-4:] == '.rec']
assert len(seq_files) > 0, "No .rec files found in" + folder
X_test += seq_files
y_test = np.concatenate([y_test, np.array([int(i)] * len(seq_files), dtype=np.int32)])
# Load dictionary and cutoff statements
folder_vocabulary = FLAGS.vocabulary_dir
dictionary_pickle = os.path.join(folder_vocabulary, 'dic_pickle')
print('\tLoading dictionary from file', dictionary_pickle)
with open(dictionary_pickle, 'rb') as f:
dictionary = pickle.load(f)
unk_index = dictionary[rgx.unknown_token]
del dictionary
# Encode source codes and get max. sequence length
X_seq_train, maxlen_train = encode_srcs(X_train, 'training', unk_index)
X_seq_val, maxlen_val = encode_srcs(X_val, 'validation', unk_index)
X_seq_test, maxlen_test = encode_srcs(X_test, 'testing', unk_index)
maxlen = max(maxlen_train, maxlen_test, maxlen_val)
print('Max. sequence length overall:', maxlen)
print('Padding sequences')
X_seq_train = pad_src(X_seq_train, maxlen, unk_index)
X_seq_val = pad_src(X_seq_val, maxlen, unk_index)
X_seq_test = pad_src(X_seq_test, maxlen, unk_index)
# Get one-hot vectors for classification
print('YTRAIN\n', y_train)
y_1hot_train = get_onehot(y_train, num_classes)
y_1hot_val = get_onehot(y_val, num_classes)
####################################################################################################################
# Setup paths
# Set up names paths
model_name = model.__name__
model_path = os.path.join(folder_results,
"models/{}.model".format(model_name))
predictions_path = os.path.join(folder_results,
"predictions/{}.result".format(model_name))
# If predictions have already been made with these embeddings, load them
if fs.exists(predictions_path):
print("\tFound predictions in", predictions_path, ", skipping...")
with open(predictions_path, 'rb') as infile:
p = pickle.load(infile)
else: # could not find predictions already computed with these embeddings
# Embeddings
import tensorflow as tf # for embeddings lookup
embedding_matrix_normalized = tf.nn.l2_normalize(embeddings, axis=1)
vocabulary_size, embedding_dimension = embedding_matrix_normalized.shape
print('XSEQ:\n', X_seq_train)
print('EMB:\n', embedding_matrix_normalized)
gen_test = EmbeddingPredictionSequence(batch_size, X_seq_test, embedding_matrix_normalized)
# If models have already been made with these embeddings, load them
if fs.exists(model_path):
print("\n\tFound trained model in", model_path, ", skipping...")
model.restore(model_path)
else: # could not find models already computed with these embeddings
gen_train = EmbeddingSequence(batch_size, X_seq_train, y_1hot_train, embedding_matrix_normalized)
gen_val = EmbeddingSequence(batch_size, X_seq_val, y_1hot_val, embedding_matrix_normalized)
############################################################################################################
# Train
# Create a new model and train it
print('\n--- Initializing model...')
model.init(seed=seed,
maxlen=maxlen,
embedding_dim=int(embedding_dimension),
num_classes=num_classes,
dense_layer_size=dense_layer_size)
if print_summary:
model.model.summary()
print('\n--- Training model...')
model.train_gen(train_generator=gen_train,
validation_generator=gen_val,
verbose=True,
epochs=num_epochs)
# Save the model
fs.mkdir(fs.dirname(model_path))
model.save(model_path)
print('\tsaved model to', model_path)
################################################################################################################
# Test
# Test model
print('\n--- Testing model...')
p = model.predict_gen(generator=gen_test)[0]
# cache the prediction
fs.mkdir(fs.dirname(predictions_path))
with open(predictions_path, 'wb') as outfile:
pickle.dump(p, outfile)
print('\tsaved predictions to', predictions_path)
####################################################################################################################
# Return accuracy
accuracy = p == y_test # prediction accuracy
return accuracy
########################################################################################################################
# Main
########################################################################################################################
def main(argv):
del argv # unused
####################################################################################################################
# Setup
# Get flag values
embeddings = task_utils.get_embeddings()
folder_results = FLAGS.out
assert len(folder_results) > 0, "Please specify a path to the results folder using --folder_results"
folder_data = FLAGS.input_data
dense_layer_size = FLAGS.dense_layer
print_summary = FLAGS.print_summary
num_epochs = FLAGS.num_epochs
batch_size = FLAGS.batch_size
train_samples = FLAGS.train_samples
# Acquire data
if not os.path.exists(os.path.join(folder_data, 'ir_train')):
# Download data
task_utils.download_and_unzip('https://polybox.ethz.ch/index.php/s/JOBjrfmAjOeWCyl/download',
'classifyapp_training_data', folder_data)
task_utils.llvm_ir_to_trainable(os.path.join(folder_data, 'ir_train'))
assert os.path.exists(os.path.join(folder_data, 'ir_val')), "Folder not found: " + folder_data + '/ir_val'
task_utils.llvm_ir_to_trainable(os.path.join(folder_data, 'ir_val'))
assert os.path.exists(os.path.join(folder_data, 'ir_test')), "Folder not found: " + folder_data + '/ir_test'
task_utils.llvm_ir_to_trainable(os.path.join(folder_data, 'ir_test'))
# Create directories if they do not exist
if not os.path.exists(folder_results):
os.makedirs(folder_results)
if not os.path.exists(os.path.join(folder_results, "models")):
os.makedirs(os.path.join(folder_results, "models"))
if not os.path.exists(os.path.join(folder_results, "predictions")):
os.makedirs(os.path.join(folder_results, "predictions"))
####################################################################################################################
# Train model
# Evaluate Classifyapp
print("\nEvaluating ClassifyappInst2Vec ...")
classifyapp_accuracy = evaluate(NCC_classifyapp(), embeddings, folder_data, train_samples, folder_results,
dense_layer_size, print_summary, num_epochs, batch_size)
####################################################################################################################
# Print results
print('\nTest accuracy:', sum(classifyapp_accuracy)*100/len(classifyapp_accuracy), '%')
if __name__ == '__main__':
app.run(main)