forked from prakornchai/opf-by-particle-swarm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLfnewton.m
158 lines (154 loc) · 5.47 KB
/
Lfnewton.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
% Power flow solution by Newton-Raphson method
% Copyright (c) 1998 by H. Saadat
% Revision 1 (Aug. 99) To include two or more parallel lines
ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;
nbus = length(busdata(:,1));
kb=[];Vm=[]; delta=[]; Pd=[]; Qd=[]; Pg=[]; Qg=[]; Qmin=[]; Qmax=[]; % Added (6-8-00)
Pk=[]; P=[]; Qk=[]; Q=[]; S=[]; V=[]; % Added (6-8-00)
for k=1:nbus
n=busdata(k,1);
kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8);
Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
Qsh(n)=busdata(k, 11);
if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
else delta(n) = pi/180*delta(n);
V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
P(n)=(Pg(n)-Pd(n))/basemva;
Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
S(n) = P(n) + j*Q(n);
end
end
for k=1:nbus
if kb(k) == 1, ns = ns+1; else, end
if kb(k) == 2 ng = ng+1; else, end
ngs(k) = ng;
nss(k) = ns;
end
Ym=abs(Ybus); t = angle(Ybus);
m=2*nbus-ng-2*ns;
maxerror = 1; converge=1;
iter = 0;
%%%% added for parallel lines (Aug. 99)
mline=ones(nbr,1);
for k=1:nbr
for m=k+1:nbr
if((nl(k)==nl(m)) & (nr(k)==nr(m)));
mline(m)=2;
elseif ((nl(k)==nr(m)) & (nr(k)==nl(m)));
mline(m)=2;
else, end
end
end
%%% end of statements for parallel lines (Aug. 99)
% Start of iterations
clear A DC J DX
while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch
for ii=1:m
for k=1:m
A(ii,k)=0; %Initializing Jacobian matrix
end, end
iter = iter+1;
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
J11=0; J22=0; J33=0; J44=0;
for ii=1:nbr
if mline(ii)==1 % Added to include parallel lines (Aug. 99)
if nl(ii) == n | nr(ii) == n
if nl(ii) == n , l = nr(ii); end
if nr(ii) == n , l = nl(ii); end
J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
if kb(n)~=1
J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
else, end
if kb(n) ~= 1 & kb(l) ~=1
lk = nbus+l-ngs(l)-nss(l)-ns;
ll = l -nss(l);
% off diagonalelements of J1
A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
if kb(l) == 0 % off diagonal elements of J2
A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end
if kb(n) == 0 % off diagonal elements of J3
A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end
if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4
A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end
else end
else , end
else, end
end
Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;
Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;
if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P
if kb(n) == 2 Q(n)=Qk;
if Qmax(n) ~= 0
Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
if iter <= 7 % Between the 2th & 6th iterations
if iter > 2 % the Mvar of generator buses are
if Qgc < Qmin(n), % tested. If not within limits Vm(n)
Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to
elseif Qgc > Qmax(n), % bring the generator Mvar within
Vm(n) = Vm(n) - 0.01;end % the specified limits.
else, end
else,end
else,end
end
if kb(n) ~= 1
A(nn,nn) = J11; %diagonal elements of J1
DC(nn) = P(n)-Pk;
end
if kb(n) == 0
A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2
A(lm,nn)= J33; %diagonal elements of J3
A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4
DC(lm) = Q(n)-Qk;
end
end
DX=A\DC';
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
if kb(n) ~= 1
delta(n) = delta(n)+DX(nn); end
if kb(n) == 0
Vm(n)=Vm(n)+DX(lm); end
end
maxerror=max(abs(DC));
if iter == maxiter & maxerror > accuracy
% fprintf('\nWARNING: Iterative solution did not converged after ')
%fprintf('%g', iter), fprintf(' iterations.\n\n')
%fprintf('Press Enter to terminate the iterations and print the results \n')
%converge = 0; pause,
else, end
end
if converge ~= 1
tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,
tech=(' Power Flow Solution by Newton-Raphson Method');
end
V = Vm.*cos(delta)+j*Vm.*sin(delta);
deltad=180/pi*delta;
i=sqrt(-1);
k=0;
for n = 1:nbus
if kb(n) == 1
k=k+1;
S(n)= P(n)+j*Q(n);
Pg(n) = P(n)*basemva + Pd(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); %june 97
elseif kb(n) ==2
k=k+1;
S(n)=P(n)+j*Q(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); % June 1997
end
yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
end
busdata(:,3)=Vm'; busdata(:,4)=deltad';
Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);
%clear A DC DX J11 J22 J33 J44 Qk delta lk ll lm
%clear A DC DX J11 J22 J33 Qk delta lk ll lm