The disassemble
command (di
for short) disassembles from the current location. If available, the
instructions and call destinations are annotated with source line information:
[zxdb] di
miscsvc.cc:118
▶ 0x20bc1c7aa60a mov dword ptr [rbx + 0x10c], eax
miscsvc.cc:122
0x20bc1c7aa610 movabs rax, -0x5555555555555556
0x20bc1c7aa61a mov qword ptr [rbx + 0xe8], rax
0x20bc1c7aa621 mov qword ptr [rbx + 0xe8], 0x0
0x20bc1c7aa62c mov rdi, qword ptr [rbx + 0xb0]
0x20bc1c7aa633 mov rax, qword ptr [rbx + 0xe8]
0x20bc1c7aa63a mov qword ptr [rbx + 0x20], rax
0x20bc1c7aa63e call 0x20d ➔ std::__2::size<>()
The di
command can also accept an address or symbol as a parameter. If given a function name,
it disassembles the entire function:
[zxdb] di main
miscsvc.cc:88
0x20bc1c7aa000 push rbp
0x20bc1c7aa001 mov rbp, rsp
0x20bc1c7aa004 push rbx
0x20bc1c7aa005 and rsp, -0x20
0x20bc1c7aa009 sub rsp, 0x140
0x20bc1c7aa010 mov rbx, rsp
0x20bc1c7aa013 mov rax, qword ptr fs:[0x10]
...
The disassemble
command accepts these switches:
-
--num=<lines>
or-n <lines>
: The number of lines or instructions to emit. Defaults to the instructions in the given function (if the location is a function name), or 16 otherwise. -
--raw
or-r
: Output raw bytes in addition to the decoded instructions.
Machine instructions can be stepped using the following Zxdb commands:
-
nexti
/ni
: Step to the next instruction, stepping over function calls. -
stepi
/si
: Step the next instruction, following function calls.
For example:
[zxdb] ni
🛑 main(int, const char**) • main.cc:102
main.cc:99
▶ 0x23f711346233 mov edx, 0x20
0x23f711346238 call 0x35a3a3 ➔ __asan_memcpy
0x23f71134623d mov rdi, qword ptr [rbx + 0x258]
0x23f711346244 call 0x1677 ➔ $anon::DecodeCommandLine
[zxdb] ni
🛑 main(int, const char**) • main.cc:102
main.cc:99
▶ 0x23f711346238 call 0x35a3a3 ➔ __asan_memcpy
0x23f71134623d mov rdi, qword ptr [rbx + 0x258]
0x23f711346244 call 0x1677 ➔ $anon::DecodeCommandLine
0x23f711346249 mov rdi, qword ptr [rbx + 0x260]
Zxdb maintains information about whether the last command was an assembly command or a source-code
and shows that information on stepping or breakpoint hits. To switch to assembly-language mode,
type disassemble
, and to switch back to source-code mode, type list
.
The regs
command shows the most common CPU registers.
[zxdb] regs
General Purpose Registers
rax 0xfffffffffffffffa = -6
rbx 0x50b7085b
rcx 0x0 = 0
rdx 0x2023de8c87a0
rsi 0x7fffffffffffffff
rdi 0x50b7085b
rbp 0x224bb1e0b950
rsp 0x224bb1e0b928
...
There are other categories and options for CPU registers that can be shown by switches to the regs
command:
-
--all
or-a
: Enable all register categories (does not imply-e
). -
--float
or-f
: Prints the dedicated floating-point registers. In most cases you should use--vector
instead because all 64-bit ARM code and most x64 code uses vector registers for floating point. -
--vector
or-v
: Prints the vector registers. See below for more details. -
--debug
or-d
: Prints the debug registers. -
--extended
or-e
: Enables more verbose flag decoding. This enables more information that is not normally useful for everyday debugging. This includes information such as the system level flags within therflags
register for x64.
Registers can be used in expressions like variables. The canonical name of a register
is $reg(register name)
.
[zxdb] print $reg(x3)
79
In addition, the raw register name can be used if there is no variable with the same name:
[zxdb] print x3
79
Registers can be assigned using the normal expression evaluation syntax:
[zxdb] print x3 = 0
0
The regs --vector
command displays vector registers in a table according to the current
vector-format
setting. Use get vector-format
to see the current value and documentation, and
set vector-format <new-value>
to set a new vector format. Possible values are:
i8
(signed) oru8
(unsigned): Array of 8-bit integers.i16
(signed) oru16
(unsigned): Array of 16-bit integers.i32
(signed) oru32
(unsigned): Array of 32-bit integers.i64
(signed) oru64
(unsigned): Array of 64-bit integers.i128
(signed) oru128
(unsigned): Array of 128-bit integers.float
: Array of single-precision floating point.double
: Array of double-precision floating point. This is the default.
[zxdb] set vector-format double
[zxdb] regs -v
Vector Registers
mxcsr 0x1fa0 = 8096
Name [3] [2] [1] [0]
ymm0 0 0 0 0
ymm1 0 0 0 3.14159
ymm2 0 0 0 0
ymm3 0 0 0 0
...
Vector registers can also be used like arrays in expressions. The vector-format
setting controls
how each register is converted into an array value. For example, to show the low 32 bits interpreted
as a floating-point value of the x86 vector register ymm1
:
[zxdb] set vector-format float
[zxdb] print ymm1[0]
3.14159
When converting to an array, the low bits are assigned to be index 0, increasing from there.
Note that the vector register table in regs
are displayed with the low values on the right side.