diff --git a/deploy_api.py b/deploy_api.py index c2a0b9c9..2e7af0c6 100644 --- a/deploy_api.py +++ b/deploy_api.py @@ -121,7 +121,7 @@ async def human_matting_inference( async def photo_add_background( input_image: UploadFile, color: str = Form("000000"), - kb: int = Form(50), + kb: int = Form(None), render: int = Form(0), ): render_choice = ["pure_color", "updown_gradient", "center_gradient"] @@ -167,7 +167,7 @@ async def generate_layout_photos( input_image: UploadFile, height: int = Form(413), width: int = Form(295), - kb: int = Form(50), + kb: int = Form(None), ): # try: image_bytes = await input_image.read() @@ -205,7 +205,7 @@ async def generate_layout_photos( return result_messgae -# 透明图像添加纯色背景接口 +# 透明图像添加水印接口 @app.post("/watermark") async def watermark( input_image: UploadFile, @@ -215,6 +215,7 @@ async def watermark( angle: int = 30, color: str = "#000000", space: int = 25, + kb: int = Form(None), ): image_bytes = await input_image.read() nparr = np.frombuffer(image_bytes, np.uint8) @@ -223,9 +224,15 @@ async def watermark( try: result_image = add_watermark(img, text, size, opacity, angle, color, space) + if kb: + result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR) + result_image_base64 = resize_image_to_kb_base64(result_image, int(kb)) + else: + result_image_base64 = numpy_2_base64(result_image) + result_messgae = { "status": True, - "image_base64": numpy_2_base64(result_image), + "image_base64": result_image_base64, } except Exception as e: result_messgae = { diff --git a/hivision/utils.py b/hivision/utils.py index afef56c0..e662d2bc 100644 --- a/hivision/utils.py +++ b/hivision/utils.py @@ -145,14 +145,14 @@ def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"): # Encode the image data to base64 img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8") - return img_base64 + return "data:image/png;base64," + img_base64 def numpy_2_base64(img: np.ndarray) -> str: _, buffer = cv2.imencode(".png", img) base64_image = base64.b64encode(buffer).decode("utf-8") - return base64_image + return "data:image/png;base64," + base64_image def base64_2_numpy(base64_image: str) -> np.ndarray: