Skip to content

Latest commit

 

History

History
119 lines (92 loc) · 3.98 KB

README.md

File metadata and controls

119 lines (92 loc) · 3.98 KB

QP Solvers for Python

Wrapper around Quadratic Programming (QP) solvers in Python, with a unified interface.

Installation

The simplest way to install this module is:

# Python 2
sudo apt install python-dev
pip install qpsolvers

# Python 3
sudo apt install python3-dev
pip3 install qpsolvers

You can add the --user parameter for a user-only installation. See also the documentation for advanced installation instructions.

Usage

The function solve_qp(P, q, G, h, A, b, lb, ub) is called with the solver keyword argument to select the backend solver. The quadratic program it solves is, in standard form:

Equation of Quadratic Program

Vector inequalities are taken coordinate by coordinate.

Example

To solve a quadratic program, simply build the matrices that define it and call the solve_qp function:

from numpy import array, dot
from qpsolvers import solve_qp

M = array([[1., 2., 0.], [-8., 3., 2.], [0., 1., 1.]])
P = dot(M.T, M)  # quick way to build a symmetric matrix
q = dot(array([3., 2., 3.]), M).reshape((3,))
G = array([[1., 2., 1.], [2., 0., 1.], [-1., 2., -1.]])
h = array([3., 2., -2.]).reshape((3,))
A = array([1., 1., 1.])
b = array([1.])

x = solve_qp(P, q, G, h, A, b)
print("QP solution: x = {}".format(x))

This example outputs the solution [0.30769231, -0.69230769, 1.38461538].

Solvers

The list of supported solvers currently includes:

Frequently Asked Questions

  • Can I print the list of solvers available on my machine?
    • Absolutely: print(qpsolvers.available_solvers)
  • Is it possible to solve a least squares rather than a quadratic program?
    • Yes, qpsolvers also provides a solve_ls function.
  • I have a squared norm in my cost function, how can I apply a QP solver to my problem?

Performances

On a dense problem, the performance of all solvers (as measured by IPython's %timeit on my machine) is:

Solver Type Time (ms)
quadprog Dense 0.02
qpoases Dense 0.03
osqp Sparse 0.04
ecos Sparse 0.34
cvxopt Dense 0.46
gurobi Sparse 0.84
cvxpy Sparse 3.40
mosek Sparse 7.17

On a sparse problem, these performances become:

Solver Type Time (ms)
osqp Sparse 1
mosek Sparse 17
ecos Sparse 21
cvxopt Dense 186
gurobi Sparse 221
quadprog Dense 550
cvxpy Sparse 654
qpoases Dense 2250

Finally, here are the results on a benchmark of random problems (each data point corresponds to an average over 10 runs):

Note that performances of QP solvers largely depend on the problem solved. For instance, MOSEK performs an automatic conversion to Second-Order Cone Programming (SOCP) which the documentation advises bypassing for better performance. Similarly, ECOS reformulates from QP to SOCP and works best on small problems.