Skip to content

Latest commit

 

History

History
 
 

yolov7

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

YOLOv7 Pruning

0. Requirements

pip install -r requirements.txt

Tested environment:

Pytorch==1.12.1
Torchvision==0.13.1

1. Pruning

The following scripts (adapted from yolov7/detect.py and yolov7/train.py) provide the basic examples of pruning YOLOv7. It is important to note that the training part has not been validated yet due to the time-consuming training process.

Note: yolov7_detect_pruned.py does not include any code for fine-tuning.

git clone https://github.com/WongKinYiu/yolov7.git
cp yolov7_detect_pruned.py yolov7/
cp yolov7_train_pruned.py yolov7/
cd yolov7 

# Test only: We only prune and test the YOLOv7 model in this script. COCO dataset is not required.
python yolov7_detect_pruned.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg

# Training with pruned yolov7 (The training part is not validated)
# Please download the pretrained yolov7_training.pt from https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt.
python yolov7_train_pruned.py --workers 8 --device 0 --batch-size 1 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights 'yolov7.pt' --name yolov7 --hyp data/hyp.scratch.p5.yaml

Screenshot for yolov7_train_pruned.py:

image

Outputs of yolov7_detect_pruned.py:

Model(
  (model): Sequential(
    (0): Conv(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
...
    (104): RepConv(
      (act): SiLU(inplace=True)
      (rbr_reparam): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (105): Detect(
      (m): ModuleList(
        (0): Conv2d(256, 255, kernel_size=(1, 1), stride=(1, 1))
        (1): Conv2d(512, 255, kernel_size=(1, 1), stride=(1, 1))
        (2): Conv2d(1024, 255, kernel_size=(1, 1), stride=(1, 1))
      )
    )
  )
)


Model(
  (model): Sequential(
    (0): Conv(
      (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
...
    (104): RepConv(
      (act): SiLU(inplace=True)
      (rbr_reparam): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (105): Detect(
      (m): ModuleList(
        (0): Conv2d(128, 255, kernel_size=(1, 1), stride=(1, 1))
        (1): Conv2d(256, 255, kernel_size=(1, 1), stride=(1, 1))
        (2): Conv2d(512, 255, kernel_size=(1, 1), stride=(1, 1))
      )
    )
  )
)
Before Pruning: MACs=6.413721 G, #Params=0.036905 G
After Pruning: MACs=1.639895 G, #Params=0.009347 G