-
Notifications
You must be signed in to change notification settings - Fork 2
/
labelme2voc.py
108 lines (100 loc) · 4.12 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import argparse
import glob
import json
import os
import os.path as osp
import sys
import labelme
import numpy as np
import PIL.Image
from sklearn.model_selection import train_test_split
from tqdm import tqdm
def main(args):
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'), exist_ok=True)
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'), exist_ok=True)
os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'), exist_ok=True)
saved_path = args.output_dir
os.makedirs(os.path.join(saved_path , 'ImageSets','Segmentation'), exist_ok=True)
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
print(i)
class_id = i+1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in tqdm(glob.glob(osp.join(args.input_dir, '*.json'))):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
# out_lbl_file = osp.join(
# args.output_dir, 'SegmentationClass', base + '.npy')
# args.output_dir, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.png')
out_viz_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(label_file.split('.json')[0]+'.jpg')
print(img_file)
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
print('class_name_to_id:',class_name_to_id)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
viz = labelme.utils.draw_label(
lbl, img, class_names, colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
#6.split files for txt
txtsavepath = os.path.join(saved_path , 'ImageSets','Segmentation')
ftrainval = open(os.path.join(txtsavepath,'trainval.txt'), 'w')
ftrain = open(os.path.join(txtsavepath,'train.txt'), 'w')
fval = open(os.path.join(txtsavepath,'val.txt'), 'w')
total_files = os.listdir(osp.join(args.output_dir, 'SegmentationClass'))
total_files = [i.split("/")[-1].split(".png")[0] for i in total_files]
for file in total_files:
ftrainval.write(file + "\n")
train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42)
#train
for file in train_files:
ftrain.write(file + "\n")
#val
for file in val_files:
fval.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--input_dir', help='input annotated directory')
parser.add_argument('--output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
main(args)