-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfinetune_reranking.py
138 lines (124 loc) · 5.22 KB
/
finetune_reranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from os.path import join
from utils.metrics import R1_mAP, R1_mAP_Pseudo
from config import cfg
import argparse
from datasets import make_dataloader
import datetime
import json
import os
import random
import logging
from collections import defaultdict
from sko.GA import GA
from sko.PSO import PSO
def cal_score(res_dict, img_pid_dict):
'''
res_dict: {'query_name': [pred1_name, pred2_name ...]}
'''
total_len = len(res_dict)
total_top1 = 0
total_map = 0
bad_dict = {}
good_dict = {}
for query, predict_list in res_dict.items():
tmp_query_pid = img_pid_dict[query]
if tmp_query_pid == '':
raise ValueError("tmp_query_pid == null ")
tmp_map = 0
tmp_hit = 0
tmp_top1 = 0
for i, x in enumerate(predict_list):
tmp_len = i + 1
if img_pid_dict[x] == tmp_query_pid:
tmp_hit += 1
tmp_map += tmp_hit / tmp_len
if not tmp_hit == 0:
tmp_map = tmp_map / tmp_hit
else:
tmp_map = 0
if img_pid_dict[predict_list[0]] == tmp_query_pid:
tmp_top1 = 1
else:
tmp_top1 = 0
total_top1 += tmp_top1
total_map += tmp_map
final_score = 0.5 * total_top1 / total_len + 0.5 * total_map / total_len
return final_score
def get_logger(logger_path):
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler(logger_path)
handler.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def tune_paramters(cfg, img_pid_dict, feat_imgpath_list, nums_list, logger, finetunemethod, max_iters):
def opt_fun(paras):
reranking_para_list = [(int(round(paras[0])),
int(round(paras[1])),
paras[2]),
(int(round(paras[3])),
int(round(paras[4])),
paras[5])]
for index in range(2):
num_tmp = nums_list[index]
evaluator = R1_mAP(num_tmp, max_rank=200, feat_norm=cfg.TEST.FEAT_NORM,
reranking=True)
evaluator.reset()
feat_imgpath = feat_imgpath_list[index]
for item in feat_imgpath:
evaluator.update(item)
data, distmat, img_name_q, img_name_g = evaluator.compute(
reranking_para_list[index])
if index == 0:
data_1 = data
res_dict = {**data_1, **data}
score = cal_score(res_dict, img_pid_dict)
return -1 * score
if finetunemethod == 'ga':
ga = GA(func=opt_fun, n_dim=6, size_pop=4, max_iter=8,
lb=[5, 1, 0.1, 5, 1, 0.1], ub=[20, 10, 0.9, 20, 10, 0.9], precision=0.1)
for _ in range(max_iters):
tmp_best_paras, score = ga.run(2)
logger.info(
"Parameter1: {:.4f}, {:.4f}, {:.4f} Parameter2: {:.4f}, {:.4f}, {:.4f}, score: {:.4f} ".format(float(tmp_best_paras[0]), float(tmp_best_paras[1]), float(tmp_best_paras[2]), float(tmp_best_paras[3]), float(tmp_best_paras[4]), float(tmp_best_paras[5]), float(score)))
elif finetunemethod == 'pso':
pso = PSO(func=opt_fun, dim=6, pop=5, max_iter=5, lb=[5, 1, 0.1, 5, 1, 0.1], ub=[20, 10, 0.9, 20, 10, 0.9], w=0.2, c1=0.1, c2=0.1)
for _ in range(max_iters):
pso.run(3)
logger.info(
"Parameter1: {:.4f}, {:.4f}, {:.4f} Parameter2: {:.4f}, {:.4f}, {:.4f}, score: {:.4f} ".format(pso.gbest_x[0], pso.gbest_x[1], pso.gbest_x[2], pso.gbest_x[3], pso.gbest_x[4], pso.gbest_x[5], pso.gbest_y))
def main():
finetunemethod = 'ga'
max_iters = 5
label_txt = '/home/zjf/naic_code/data/naic2020_evaldataset/test/g_q.txt'
cfg.merge_from_file('./configs/naic_round2_model_a_local.yml')
g_feat_imgpath = '/home/zjf/naic_code/data/feats_imagepath_list/saved_feat_imagepath_list_1.npy'
n_feat_imgpath = '/home/zjf/naic_code/data/feats_imagepath_list/saved_feat_imagepath_list_2.npy'
logger = get_logger("../log/reranking_finetune.log")
with open(label_txt, 'r') as f:
labels = f.readlines()
img_pid_dict = defaultdict(str)
for label in labels:
img_name, pid = label.rstrip().split(':')
img_pid_dict[img_name] = pid
feat_imgpath_path_list = [g_feat_imgpath, n_feat_imgpath]
feat_imgpath_list = []
for item in feat_imgpath_path_list:
feat_imgpath = np.load(item, allow_pickle=True)
feat_imgpath = feat_imgpath.tolist()
feat_imgpath_list.append(feat_imgpath)
_, val_loader_green, val_loader_normal, num_query_green, num_query_normal, _ = make_dataloader(
cfg)
val_loaders = [val_loader_green, val_loader_normal]
nums_list = [num_query_green, num_query_normal]
tune_paramters(cfg, img_pid_dict, feat_imgpath_list,
nums_list, logger, finetunemethod, max_iters)
if __name__ == "__main__":
main()