forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathculasvd.cpp
178 lines (151 loc) · 5.51 KB
/
culasvd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include "mex.h"
#include "cula_lapack.hpp"
#include "culamex.hpp"
#include "iostream"
#include "windows.h"
using std::max;
using std::min;
using std::cout;
using std::endl;
// Complex conjugation of complex data
template<class T> void Conjugate(T* a) { /* Do nothing */ };
template<> void Conjugate(culaFloatComplex* a) { a->y = -(a->y); }
template<> void Conjugate(culaDoubleComplex* a) { a->y = -(a->y); }
// Templated wrapper
template <typename T>
void mexCulaGesvd(int nlhs, /* number of expected outputs */
mxArray* plhs[], /* output pointer array */
int nrhs, /* number of inputs */
const mxArray* prhs[], /* input pointer array */
mxClassID id,
mxComplexity complexity)
{
unsigned long t1,t2;
// Function core, details in "Using CULA in MATLAB, Part 2"
// culaGesvd(...)
// Initialize flags and types
typedef typename ToReal<T>::type RealType;
bool isReal = (complexity == mxREAL);
bool isComplex = (complexity == mxCOMPLEX);
// Initialize sizes
int M = (int) mxGetM(prhs[0]);
int N = (int) mxGetN(prhs[0]);
int K = min(M,N);
int L = max(M,N);
t1=GetTickCount();
// Allocate a temporary to not destroy input data
T* A = (T*) mxMalloc( M * N * sizeof(T) );
if (isReal)
{
// Copy input data directly into temporary
memcpy( A, mxGetPr( prhs[0] ), M * N * sizeof(T) );
}
else if (isComplex)
{
// If complex, convert from MATLAB format into CULA format
MatToCula( A, prhs[0] );
}
// Create MATLAB output matrices
plhs[0] = mxCreateNumericMatrix(M, M, id, complexity); // U (M x M)
plhs[1] = mxCreateNumericMatrix(M, N, id, 0); // S (M x N, Real)
plhs[2] = mxCreateNumericMatrix(N, N, id, complexity); // V (N x N)
// Allocate CULA intermediate
RealType* SVEC = (RealType*) mxMalloc( K * sizeof(RealType) );
// CULA Memory Pointers
T* U;
T* VT;
if (isReal)
{
// Get CULA memory pointers from allocated MATLAB matrices
U = (T*) mxGetPr( plhs[0] );
VT = (T*) mxGetPr( plhs[2] );
}
else if (isComplex)
{
// If complex, allocate an AoS complex buffer for CULA
U = (T*) mxMalloc( M * M * sizeof(T) );
VT = (T*) mxMalloc( N * N * sizeof(T) );
}
t2=GetTickCount();
cout<<"memory preparation takes:"<<t2-t1<<endl;
// culaStatus status;
// Initialize CULA
t1=GetTickCount();
culaStatus status = culaInitialize();
checkStatus(status, "culaInitialize");
t2=GetTickCount();
cout<<"culaInitialize takes:"<<t2-t1<<endl;
// CULA SVD Factorization
t1=GetTickCount();
status = culaGesvd('A', 'A', M, N, A, M, SVEC, U, M, VT, N);
checkStatus(status, "culaGesvd");
t2=GetTickCount();
cout<<"culaGesvd takes:"<<t2-t1<<endl;
// Shutdown CULA
t1=GetTickCount();
culaShutdown();
t2=GetTickCount();
cout<<"culaShutdown takes:"<<t2-t1<<endl;
// Get pointer to output matrix, S
t1=GetTickCount();
RealType* S = (RealType*) mxGetPr( plhs[1] );
// Copy SVEC to diagonal of S
for (int i=0; i<K; i++)
S[i*M+i] = SVEC[i];
// Inplace transpose of VT
for (int i=0; i<N; i++)
{
for (int j=i; j<N; j++)
{
T temp = VT[j+i*N];
VT[j+i*N] = VT[i+j*N];
VT[i+j*N] = temp;
}
}
// If complex, conjugate VT
if (isComplex)
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
Conjugate( &VT[j+i*N] );
if (isComplex)
{
// If complex, convert from CULA format into MATLAB format
CulaToMat( plhs[0], U );
CulaToMat( plhs[2], VT );
// Free MATLAB buffers
mxFree(U);
mxFree(VT);
}
// Free allocate data
mxFree(A);
mxFree(SVEC);
t2=GetTickCount();
cout<<"output and clear takes:"<<t2-t1<<endl;
}
// MATLAB Gateway Function
void mexFunction(int nlhs, /* number of expected outputs */
mxArray* plhs[], /* output pointer array */
int nrhs, /* number of inputs */
const mxArray* prhs[] /* input pointer array */ )
{
// We only support a full SVD in this example
if(nrhs != 1)
mexErrMsgTxt("culasvd: Must have 1 input argument [X]");
if(nlhs != 3)
mexErrMsgTxt("culasvd: Must have 3 output arguments [U,S,V]");
// Get precision (single or double)
mxClassID classID = mxGetClassID(prhs[0]);
// Get complexity (real or complex)
mxComplexity complexity = mxIsComplex(prhs[0]) ? mxCOMPLEX : mxREAL;
// Switch based on data type
if ( classID == mxSINGLE_CLASS && complexity == mxREAL)
mexCulaGesvd<culaFloat>(nlhs, plhs, nrhs, prhs, classID, complexity);
else if (classID == mxDOUBLE_CLASS && complexity == mxREAL )
mexCulaGesvd<culaDouble>(nlhs, plhs, nrhs, prhs, classID, complexity);
else if ( classID == mxSINGLE_CLASS && complexity == mxCOMPLEX )
mexCulaGesvd<culaFloatComplex>(nlhs, plhs, nrhs, prhs, classID, complexity);
else if ( classID == mxDOUBLE_CLASS && complexity == mxCOMPLEX )
mexCulaGesvd<culaDoubleComplex>(nlhs, plhs, nrhs, prhs, classID, complexity);
else
mexErrMsgTxt("culasvd: Unknown or unsupported data type");
}