forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl1_low_rank_new.m
120 lines (99 loc) · 2.53 KB
/
l1_low_rank_new.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function [ Z, W, E ] = l1_low_rank( X, beta, lambda, maxIter )
%L1_LOW_RANK Summary of this function goes here
% Detailed explanation goes here
[d,n]=size(X);
m=n;
fprintf(1,'n is %d\n',n);
tol1 = 1e-4;%threshold for the error in constraint
tol2 = 1e-5;%threshold for the change in the solutions
Z=zeros(m,n);
W=Z;
E=zeros(d,n);
Y1=zeros(d,n);
Y2=zeros(m,n);
mu = min(d,n)*tol2;
max_mu=1e10;
rho_0=1.1;
rho=rho_0;
epsilon1=1e-6;
epsilon2=1e-2;
norm2X = norm(X,2);
A=X;
eta1 = norm2X*norm2X*1.02;%eta needs to be larger than ||X||_2^2, but need not be too large.
fprintf(1,'eta1 is %f\n',eta1);
k=0;
Zk_1=Z;
Wk_1=W;
Ek_1=E;
Xf=norm(X,'fro');
AZ=zeros(d,n);
MAX_ITER=maxIter;
iter=0;
sv = 5;
% main loop
while true
tic;
% update Z
Zk_1=Z;
T=Z+(A'*(X-AZ-E+Y1/mu)-(Z-W+Y2/mu))/eta1;
% if choosvd(n, sv) == 1
% % fprintf(1,'partial svd use lansvd\n');
% [U S V] = lansvd(T, sv, 'L');
% else
% % fprintf(1,'matlab svd\n');
% [U S V] = svd(T, 'econ');
% end
% diagS = diag(S);
% svp = length(find(diagS > 1/(eta1*mu)));
% if svp < sv
% sv = min(svp + 1, n);
% else
% sv = min(svp + round(0.05*n), n);
% end
% Z = U(:, 1:svp) * diag(diagS(1:svp) - 1/(mu*eta1)) * V(:, 1:svp)';
[Z,svp]=singular_value_shrinkage(T,1/(eta1*mu));
Z=max(Z,0); % convex
Z=Z-diag(diag(Z)); % TODO: not tested, added 2013-03-28 diag(Z)=0
AZ=A*Z;
% update W
Wk_1=W;
W=max(W,0);
W=wthresh(Z+Y2/mu,'s',beta*(1/mu));
W=W-diag(diag(W)); % TODO: not tested, added 2013-03-28 diag(W)=0
% W=max(wthresh(Z+Y2/mu,'s',beta*mu^-1),0);
% update E
Ek_1=E;
E=l21(X-AZ+Y1/mu,lambda*(1/mu));
% update lagrange multipliers
Y1=Y1+mu*(X-AZ-E);
Y2=Y2+mu*(Z-W);
% stop criteria
t1=norm(X-AZ-E,'fro')/Xf;
t2=mu*max(max(sqrt(eta1)*norm(Z-Zk_1,'fro'),norm(W-Wk_1,'fro')),norm(E-Ek_1,'fro'))/Xf;
% update mu
if t2>=epsilon2
rho=1;
else
rho=rho_0;
end
mu = min(max_mu,rho*mu);
%update k
k=k+1;
t=toc;
% fprintf(1,'one iteration takes:%f\n',t);
iter=iter+1;
if iter==1 || mod(iter,50)==0
fprintf(1,'iter %d,svp %d,reconstruction error is %f,change error is %f\n',iter,svp,t1,t2);
end
% 判断中止条件
if iter>MAX_ITER
fprintf(1,'max iter num reached!\n');
break;
end
% terminate condition
if t1>=epsilon1 || t2>=epsilon2
else
fprintf(1,'stop criteria reached! terminate!\n');
break;
end
end