forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_lrr_acc.m
330 lines (290 loc) · 8.27 KB
/
multi_lrr_acc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
function [ZZ,Z,E] = multi_lrr(X,lambda,alpha)
% implement the algorithm described in paper "Multi-task Low-rank Affinity Pursuit for Image Segmentation"
% solve \sum_{i=1}^k(||J_i||_*+lambda||E_i||_{2,1})+alpha||ZZ||_{2,1} s.t. X=XS+E,Z=J,Z=S
k=size(X,1); % k*1 cell array, k views
[m,n]=size(X{1}); % every view has the same dimension
% initial matrix cell array
E=cell(k,1);
for i=1:k
E{i}=zeros(m,n);
end
J=cell(k,1);
for i=1:k
J{i}=zeros(n,n);
end
S=cell(k,1);
for i=1:k
S{i}=zeros(n,n);
end
Z=cell(k,1);
for i=1:k
Z{i}=zeros(n,n);
end
W=cell(k,1);
for i=1:k
W{i}=zeros(n,n);
end
Y=cell(k,1);
for i=1:k
Y{i}=zeros(m,n);
end
V=cell(k,1);
for i=1:k
V{i}=zeros(n,n);
end
ZZ=zeros(k,n*n);
% k's iteration vars
Ek=cell(k,1);
for i=1:k
Ek{i}=zeros(m,n);
end
Jk=cell(k,1);
for i=1:k
Jk{i}=zeros(n,n);
end
Sk=cell(k,1);
for i=1:k
Sk{i}=zeros(n,n);
end
Zk=cell(k,1);
for i=1:k
Zk{i}=zeros(n,n);
end
% parameters
mu=1e-6;
max_mu=10^10;
rho=1.9;
% epsilon=1e-4;
% epsilon2=1e-5; % must be small!
epsilon=1e-8; % 1e-5
epsilon2=1e-8; % must be small! 1e-4
% pre caculate matrix value
xtx=cell(k,1);
for i=1:k
xtx{i}=X{i}'*X{i};
end
invx=cell(k,1);
for i=1:k
invx{i}=inv(xtx{i}+eye(n));
end
Xf=cell(k,1);
for i=1:k
Xf{i}=norm(X{i},'fro');
end
% the residual error and the error between Z,J,S
Xc=cell(k,1);
ZJc=cell(k,1);
ZSc=cell(k,1);
sv=cell(k,1);
for i=1:k
sv{i}=0;
end
svp=cell(k,1);
for i=1:k
svp{i}=0;
end
F=cell(k,1);
M=cell(k,1);
MAX_ITER=100000000;
iter=0;
convergenced=false;
clambda=cell(k,1);
clambda(1:k)={lambda};
tic
while ~convergenced
if iter>MAX_ITER
fprintf(1,'max iter num reached!\n');
save_matrix(J,S,Z,F);
break;
end
cmu=cell(k,1);
cmu(1:k)={mu};
% update J_i
Jk=J;
[J, svp, sv]=cellfun(@updateJ,Z,W,cmu,sv,'UniformOutput',false);
% update S_i
Sk=S;
S=cellfun(@updateS,invx,xtx,X,E,Z,Y,V,W,cmu,'UniformOutput',false,'ErrorHandler',@errorfun);
% update ZZ
[F]=cellfun(@updateF,J,S,W,V,cmu,'UniformOutput',false);
[M]=cellfun(@updateM,F,'UniformOutput',false);
MM=zeros(k,n*n);
for i=1:k
% TODO: normalize
% fprintf(1,'M{%d}, max: %f, min: %f\n',i,max(max(M{i})),min(min(M{i})));
% M{i} = (M{i} - min(M{i}(:))) ./ (max(M{i}(:))-min(M{i}(:)));
% fprintf(1,'M{%d},max: %f, min: %f\n',i,max(max(M{i})),min(min(M{i})));
MM(i,:)=M{i};
end
% fprintf(1,'============================================================\n');
ZZ=l21(MM,alpha/(2*mu));
% update Z_i
for i=1:k
Zk{i}=Z{i};
Z{i}=reshape(ZZ(i,:),n,n)';
% fprintf(1,'Z changed by L21, the diff between Z%d{%d} and Z{%d} is %e\n',iter,i,i,norm(Zk{i}-Z{i}));
% Z{i}=Z{i}-diag(diag(Z{i}));
% Z{i}=max(Z{i},0);
end
% TODO: for debug
% print_matrix(J,S,Z,F,svp,mu);
% update E_i
Ek=E;
[E]=cellfun(@updateE,X,S,Y,cmu,clambda,'UniformOutput',false);
% check convergence
[Xv,Xc,ZJv,ZJc,ZSv,ZSc,Zc,Jc,Sc,Ec] = cellfun(@caculateTempVars,X,S,E,Z,J,Zk,Jk,Sk,Ek,Xf,'UniformOutput',false);
changeX=max([Xv{:}]);
changeZJ=max([ZJv{:}]);
changeZS=max([ZSv{:}]);
changeZ=max([Zc{:}]);
changeJ=max([Jc{:}]);
changeS=max([Sc{:}]);
changeE=max([Ec{:}]);
tmp=[changeZ changeJ changeS changeE ];
gap=mu*max(tmp);
if mod(iter,50)==0
fprintf(1,'===========================================================================================================\n');
fprintf(1,'gap between two iteration is %f,mu is %f\n',gap,mu);
fprintf(1,'iter %d,mu is %e,ResidualX is %e,changeZJ is %e,changeZS is %e\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
end
if changeX <= epsilon && changeZJ <= epsilon && changeZS <= epsilon
% if changeX <= epsilon && gap <=epsilon2 && changeZJ <= epsilon && changeZS <= epsilon
convergenced=true;
fprintf(2,'convergenced, iter is %d\n',iter);
fprintf(2,'iter %d,mu is %f,ResidualX is %e,changeZJ is %e,changeZS is %e\n',iter,mu,changeX,changeZJ,changeZS);
for i=1:k
fprintf(1,'svp%d %d,',i,svp{i});
end
fprintf(1,'\n');
save_matrix(J,S,Z,F);
end
% update multipliers
[Y]=cellfun(@updateY,Y,cmu,Xc,'UniformOutput',false);
[W]=cellfun(@updateW,W,cmu,ZJc,'UniformOutput',false);
[V]=cellfun(@updateV,V,cmu,ZSc,'UniformOutput',false);
% update parameters
% if gap < epsilon2
mu=min(rho*mu,max_mu);
% end
iter=iter+1;
end
toc
% Jk{i}=J{i};
% [JT,svpt,svt]=singular_value_shrinkage_acc(Z{i}+W{i}/mu,1/mu,sv{i});
% J{i}=JT;
% svp{i}=svpt;
% sv{i}=svt;
function [J, svp, sv] = updateJ(Z,W,mu,sv)
% [J,svp,sv]=singular_value_shrinkage_acc(Z+W/mu,1/mu,sv);
[J,svp]=singular_value_shrinkage(Z+W/mu,1/mu); % TODO: sometimes PROPACK is slower than full svd, and sometimes it will throw the following error
% J = (J - min(J(:))) ./ (max(J(:))-min(J(:))); % TODO: 有可能除0了
% J=J-diag(diag(J));
% J=max(J,0);
% Error using vertcat
% CAT arguments dimensions are not consistent.
% Error in lansvd (line 228)
% [S,bot] = bdsqr(diag(B),[diag(B,-1); resnrm]);
% Error in singular_value_shrinkage_acc (line 5)
% [U S V] = lansvd(X, sv, 'L');
% S{i}=invx{i}*(xtx{i}-X{i}'*E{i}+Z{i}+(X{i}'*Y{i}+V{i}-W{i})/mu);
function [S] = updateS(invx,xtx,X,E,Z,Y,V,W,mu)
S=invx*(xtx-X'*E+Z+(X'*Y+V-W)/mu);
% S = (S - min(S(:))) ./ (max(S(:))-min(S(:)));
% S=S-diag(diag(S));
% S=max(S,0);
% F{i}=(J{i}+S{i}-(W{i}+V{i})*mu)/2;
function [F] = updateF(J,S,W,V,mu)
% add normalize
T1=J-W/mu;
T2=S-V/mu;
% TODO: normalize not work
% T1=mnormalize_col(T1);
% T2=mnormalize_col(T2);
% F=(J+S-(W+V)*mu)/2; % TODO: fix bug, not *mu, should be /mu
F=(T1+T2)/2;
% F = (F - min(F(:))) ./ (max(F(:))-min(F(:)));
% M{i}=reshape(F{i}',1,n*n);
function [M] = updateM(F)
n=length(F);
M=reshape(F',1,n*n);
% E{i}=l21(X{i}-X{i}*S{i}+Y{i}/mu,lambda/(2*mu)); % bug fixed, parameter should be lambda/(2*mu), not lambda/mu
function [E] = updateE(X,S,Y,mu,lambda)
% E=l21(X-X*S+Y/mu,lambda/(2*mu)); % TODO: why 2*mu, I believe it should be mu!
E=l21(X-X*S+Y/mu,lambda/(mu));
% Xc{i}=X{i}-X{i}*S{i}-E{i};
% ZJc{i}=Z{i}-J{i};
% ZSc{i}=Z{i}-S{i};
% vals(i)=norm(Xc{i},'fro')/Xf{i};
% vals(i)=norm(ZJc{i},'fro')/Xf{i};
% vals(i)=norm(ZSc{i},'fro')/Xf{i};
% vals(i)=norm(Zk{i}-Z{i},'fro')/Xf{i};
% vals(i)=norm(Jk{i}-J{i},'fro')/Xf{i};
% vals(i)=norm(Sk{i}-S{i},'fro')/Xf{i};
% vals(i)=norm(Ek{i}-E{i},'fro')/Xf{i};
function [Xv,Xc,ZJv,ZJc,ZSv,ZSc,Zc,Jc,Sc,Ec] = caculateTempVars(X,S,E,Z,J,Zk,Jk,Sk,Ek,Xf)
Xc=X-X*S-E;
ZJc=Z-J;
ZSc=Z-S;
Xv=norm(Xc,'fro')/Xf;
ZJv=norm(ZJc,'fro')/Xf;
ZSv=norm(ZSc,'fro')/Xf;
Zc=norm(Zk-Z,'fro')/Xf;
Jc=norm(Jk-J,'fro')/Xf;
Sc=norm(Sk-S,'fro')/Xf;
Ec=norm(Ek-E,'fro')/Xf;
% Y{i}=Y{i}+mu*Xc{i};
% W{i}=W{i}+mu*ZJc{i};
% V{i}=V{i}+mu*ZSc{i};
function [Y] = updateY(Y,mu,Xc)
Y=Y+mu*Xc;
function [W] = updateW(W,mu,ZJc)
W=W+mu*ZJc;
function [V] = updateV(V,mu,ZSc)
V=V+mu*ZSc;
function result = errorfun(S, varargin)
warning(S.identifier, S.message);
result = NaN;
function [] = save_matrix(J,S,Z,F)
k=length(J);
% TODO: for debug
for i=1:k
h=figure('Visible', 'off');
imagesc(S{i});
colormap(gray);
axis equal;
saveas(h,['S' num2str(i) '.png']);
end
for i=1:k
h=figure('Visible', 'off');
imagesc(Z{i});
colormap(gray);
axis equal;
saveas(h,['Z' num2str(i) '.png']);
end
for i=1:k
h=figure('Visible', 'off');
imagesc(J{i});
colormap(gray);
axis equal;
saveas(h,['J' num2str(i) '.png']);
end
for i=1:k
h=figure('Visible', 'off');
imagesc(F{i});
colormap(gray);
axis equal;
saveas(h,['F' num2str(i) '.png']);
end
function [] = print_matrix(J,S,Z,F,svp,mu)
% TODO: for debug
k=length(J);
for i=1:k
[aa bb1 cc]=svd(Z{i});
[aa bb2 cc]=svd(S{i});
[aa bb3 cc]=svd(F{i});
fprintf(1,'Z%d rank %d,S%d rank %d,F%d rank %d,J%d rank is %d\n',i,length(find(diag(bb1)>1/mu)),i,length(find(diag(bb2)>1/mu)),i,length(find(diag(bb3)>1/mu)),i,svp{i});
end