-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_model.py
5400 lines (4124 loc) · 327 KB
/
circuit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer,GPT2LMHeadModel
from tqdm import trange
import numpy as np
import logging
class trunk_model(nn.Module):
def __init__(self,args):
super().__init__()
self.args=args
self.model_name=args.model_name
self.task_name=args.task_name
self.model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
self.tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.Unembedding=self.model.lm_head.weight#[E,D]
self.layers=self.model.transformer.h
self.device=args.device
@property
def device(self):
return self.model.device
@device.setter
def device(self, device):
self.model = self.model.to(device)
self.layers = self.layers.to(device)
def forward(self,inputs,label_ids,m,n,input_matrix,cut_circuit_tensor_all):
input_matrix_new=input_matrix.clone()
to_cut=m
cut_circuit=n
to_cut_layer=m//29
cut_circuit_layer=n//29
inputs=inputs.to(self.device)
label_ids=label_ids.to(self.device)
input_ids=inputs['input_ids']
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.model.transformer.wte(input_ids)
past_length = 0
past_key_values = tuple([None] * len(self.layers))
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0)
position_embeds = self.model.transformer.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
circuit_input=hidden_states
if cut_circuit_tensor_all is not None:
cut_circuit_tensor=cut_circuit_tensor_all[cut_circuit%29]
for i, (block, layer_past) in enumerate(zip(self.layers, past_key_values)):
if m!=0 and to_cut_layer>i and (i!=cut_circuit_layer or n%29!=0):
continue
#construct space mapping matrix
key_length=circuit_input.size()[-2]
W_qkv=block.attn.c_attn.weight #R^[d,3a]=[768,2304]
W_qkvbias=block.attn.c_attn.bias #R^[3a]=[2304]
W_qkvbias=W_qkvbias.repeat(key_length,1)#R^[N,3a]=[14,2304]
W_q,W_k,W_v=W_qkv.split(768, dim=1)#R^[d,a]=[768,768]
W_qbias,W_kbias,W_vbias=W_qkvbias.split(768, dim=-1)#R^[N,a]=[14,768]
W_mhq=self._split_heads(W_q,12,64)#R^[num_head,d,a/num_head]=[12,768,64] simply H represents num_heads
W_mhk=self._split_heads(W_k,12,64)
W_mhv=self._split_heads(W_v,12,64)
W_mhqbias=self._split_heads(W_qbias,12,64)#R^[num_head,N,a/num_head]=[12,14,64]
W_mhkbias=self._split_heads(W_kbias,12,64)
W_mhvbias=self._split_heads(W_vbias,12,64)
W_mhqk=torch.matmul(W_mhq,W_mhk.transpose(-1,-2))#R[H, d,d]=[12,768,768]
W_o=block.attn.c_proj.weight#R^[a,d]=[768,768]
W_obias=block.attn.c_proj.bias#R^[d]=[768],but in practice, we used R=[N,768]
W_obias=W_obias.repeat(key_length,1)#R^[N,a]=[14,768]
W_mho=self._split_heads(W_o.transpose(-1,-2),12,64).transpose(-1,-2)#because a is first dim, so need transpose, R^[H,a/H,D]=[12,64,768]
W_mhov=torch.matmul(W_mhv,W_mho)#R^[H,d,d]=[12,768,768]
W_mlp1=block.mlp.c_fc.weight #R^[d,m]=[768,3072]
W_mlp1bias=block.mlp.c_fc.bias #R^[m]=[3072]
W_mlp1bias=W_mlp1bias.repeat(key_length,1)#R^[N,m]=[14,3072]
W_mlp2=block.mlp.c_proj.weight #R^[m,d]=[3072,768]
W_mlp2bias=block.mlp.c_proj.bias #R^[d]=[768]
W_mlp2bias=W_mlp2bias.repeat(key_length,1)#R^[N,m]=[14,3072]
Act_mlp=block.mlp.act #activation of mlp, and activation of attention omitted is softmax
#circuit_1 is the self path, only include itself
if i<=to_cut_layer and m!=0:
circuit_1_in=input_matrix[i][0].unsqueeze(0)
else: circuit_1_in=circuit_input
if i == to_cut_layer and to_cut%29==0 and i!=0:
circuit_1_in=self.check_representation(circuit_1_in,cut_circuit_tensor)
circuit_1=circuit_1_in
if m==0 or i>=to_cut_layer :
input_matrix_new[i][0]=circuit_1_in[0]
#circuit_2 is the attention only path, only include attention,
if i<=to_cut_layer and m!=0:
circuit_2_in=input_matrix[i][1:13]
else:
circuit_2_in=circuit_input
circuit_2_in=circuit_2_in.repeat(12,1,1)#get multi-head representation matrix, R^[H,N,d]=[12,14,768]
circuit_2_in_h1,circuit_2_in_h2,circuit_2_in_h3,circuit_2_in_h4,circuit_2_in_h5,circuit_2_in_h6,circuit_2_in_h7,\
circuit_2_in_h8,circuit_2_in_h9,circuit_2_in_h10,circuit_2_in_h11,circuit_2_in_h12=circuit_2_in.split(1,dim=0)
if i == to_cut_layer and to_cut%29==1:
circuit_2_in_h1=self.check_representation(circuit_2_in_h1,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==2:
circuit_2_in_h2=self.check_representation(circuit_2_in_h2,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==3:
circuit_2_in_h3=self.check_representation(circuit_2_in_h3,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==4:
circuit_2_in_h4=self.check_representation(circuit_2_in_h4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==5:
circuit_2_in_h5=self.check_representation(circuit_2_in_h5,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==6:
circuit_2_in_h6=self.check_representation(circuit_2_in_h6,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==7:
circuit_2_in_h7=self.check_representation(circuit_2_in_h7,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==8:
circuit_2_in_h8=self.check_representation(circuit_2_in_h8,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==9:
circuit_2_in_h9=self.check_representation(circuit_2_in_h9,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==10:
circuit_2_in_h10=self.check_representation(circuit_2_in_h10,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==11:
circuit_2_in_h11=self.check_representation(circuit_2_in_h11,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==12:
circuit_2_in_h12=self.check_representation(circuit_2_in_h12,cut_circuit_tensor)
circuit_2_in=torch.cat((circuit_2_in_h1,circuit_2_in_h2,circuit_2_in_h3,circuit_2_in_h4,circuit_2_in_h5,circuit_2_in_h6,circuit_2_in_h7,\
circuit_2_in_h8,circuit_2_in_h9,circuit_2_in_h10,circuit_2_in_h11,circuit_2_in_h12),dim=0)
if m==0 or i>=to_cut_layer :
input_matrix_new[i][1:13]=circuit_2_in
circuit2_input_ln = block.ln_1(circuit_2_in)# make representation matrix get normed
#get raw attention weight A (raw compression matrix), actually A consists of 4 items
Output_mhqk=torch.matmul(circuit2_input_ln,W_mhqk)#X*Wqk
Output_mhqk=torch.matmul(Output_mhqk,circuit2_input_ln.transpose(-1,-2))#X*Wqk*XT, R^[H,N,N]=[12,14,14]
Output_mhqkb1=torch.matmul(W_mhqbias,W_mhk.transpose(-1,-2))#bq*WkT
Output_mhqkb1=torch.matmul(Output_mhqkb1,circuit2_input_ln.transpose(-1,-2))#bq*WkT*XT, R[H,N,N]
Output_mhqkb2=torch.matmul(circuit2_input_ln,W_mhq)#X*Wq
Output_mhqkb2=torch.matmul(Output_mhqkb2,W_mhkbias.transpose(-1,-2))#X*Wq*bkT, R[H,N,N]
Output_mhqkb3=torch.matmul(W_mhqbias,W_mhkbias.transpose(-1,-2))#bq*bkT, R[H,N,N]
Output_mhqk=Output_mhqk+Output_mhqkb1+Output_mhqkb2+Output_mhqkb3
Output_mhqk = Output_mhqk / torch.full(
[], 64 ** 0.5, dtype=Output_mhqk.dtype, device=Output_mhqk.device)
#get compression matrix
# if only "normal" attention layer implements causal mask
_, key_length = circuit2_input_ln.size(-2), circuit2_input_ln.size(-2)
causal_mask = torch.tril(torch.ones((key_length, key_length), dtype=torch.bool)).view(
1, key_length, key_length).to(self.device)
mask_value = torch.finfo(Output_mhqk.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.full([], mask_value, dtype=Output_mhqk.dtype, device=Output_mhqk.device)
Output_mhqk = torch.where(causal_mask, Output_mhqk.to(Output_mhqk.dtype), mask_value)
attn_weights=nn.functional.softmax(Output_mhqk, dim=-1) #R^[H,N,N] but R^[H,-1,N]represents the next token prediction, so the valid dim is R^[H,1,N]
#get output of OV path (representation matrix)
Output_mhov=torch.matmul(circuit2_input_ln,W_mhov)#X*Wov, R^[H,N,d]=[12,14,768]
#get production of each head and sum of all heads
bv_Wo=torch.matmul(W_mhvbias,W_mho)#R[H,N,D]=[12,14,768]
Output_mh=torch.matmul(attn_weights,Output_mhov)+torch.matmul(attn_weights,bv_Wo)#AxWvWo+A*bv*Wo
# R^[H,N,d], but R^[H,-1,d]represents the next token prediction, so the valid dim is R^[H,1,d]
#get each head
circuit_2_h1,circuit_2_h2,circuit_2_h3,circuit_2_h4,circuit_2_h5,circuit_2_h6,circuit_2_h7,circuit_2_h8,\
circuit_2_h9,circuit_2_h10,circuit_2_h11,circuit_2_h12=Output_mh.split(1,dim=0)
circuit_2=circuit_2_h1+circuit_2_h2+circuit_2_h3+circuit_2_h4+circuit_2_h5+circuit_2_h6+circuit_2_h7+circuit_2_h8+circuit_2_h9+circuit_2_h10+circuit_2_h11+circuit_2_h12
#finally add the bias of Wo, because Wo is conducted after merging the head
#circuit_3 is the mlp only path,
if i<=to_cut_layer and m!=0:
circuit_3_in=input_matrix[i][13].unsqueeze(0)
else:
circuit_3_in=circuit_input
if i == to_cut_layer and to_cut%29==13:
circuit_3_in=self.check_representation(circuit_3_in,cut_circuit_tensor)
if m==0 or i>=to_cut_layer :
input_matrix_new[i][13]=circuit_3_in[0]
circuit3_input_ln = block.ln_1(circuit_3_in)# make representation matrix get normed R^[N,d]=[14,768]
circuit3_input_ln = block.ln_2(circuit3_input_ln)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1=torch.matmul(circuit3_input_ln,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_3=Act_mlp(Output_mlp1) #activated
circuit_3=torch.matmul(Output_mlp1_act_3,W_mlp2)#R^[B,N,d]=[1,14,768]
#new circuit_2 for circuit_4
if i<=to_cut_layer and m!=0:
circuit_2_in_forc4=input_matrix[i][14:26]
else:
circuit_2_in_forc4=circuit_input
circuit_2_in_forc4=circuit_2_in_forc4.repeat(12,1,1)#get multi-head representation matrix, R^[H,N,d]=[12,14,768]
circuit_2_in_h1_forc4,circuit_2_in_h2_forc4,circuit_2_in_h3_forc4,circuit_2_in_h4_forc4,circuit_2_in_h5_forc4,circuit_2_in_h6_forc4,\
circuit_2_in_h7_forc4,circuit_2_in_h8_forc4,circuit_2_in_h9_forc4,circuit_2_in_h10_forc4,circuit_2_in_h11_forc4,circuit_2_in_h12_forc4=\
circuit_2_in_forc4.split(1,dim=0)
if i == to_cut_layer and to_cut%29==14:
circuit_2_in_h1_forc4=self.check_representation(circuit_2_in_h1_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==15:
circuit_2_in_h2_forc4=self.check_representation(circuit_2_in_h2_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==16:
circuit_2_in_h3_forc4=self.check_representation(circuit_2_in_h3_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==17:
circuit_2_in_h4_forc4=self.check_representation(circuit_2_in_h4_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==18:
circuit_2_in_h5_forc4=self.check_representation(circuit_2_in_h5_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==19:
circuit_2_in_h6_forc4=self.check_representation(circuit_2_in_h6_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==20:
circuit_2_in_h7_forc4=self.check_representation(circuit_2_in_h7_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==21:
circuit_2_in_h8_forc4=self.check_representation(circuit_2_in_h8_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==22:
circuit_2_in_h9_forc4=self.check_representation(circuit_2_in_h9_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==23:
circuit_2_in_h10_forc4=self.check_representation(circuit_2_in_h10_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==24:
circuit_2_in_h11_forc4=self.check_representation(circuit_2_in_h11_forc4,cut_circuit_tensor)
if i == to_cut_layer and to_cut%29==25:
circuit_2_in_h12_forc4=self.check_representation(circuit_2_in_h12_forc4,cut_circuit_tensor)
circuit_2_in_forc4=torch.cat(( circuit_2_in_h1_forc4,circuit_2_in_h2_forc4,circuit_2_in_h3_forc4,circuit_2_in_h4_forc4,circuit_2_in_h5_forc4,circuit_2_in_h6_forc4,\
circuit_2_in_h7_forc4,circuit_2_in_h8_forc4,circuit_2_in_h9_forc4,circuit_2_in_h10_forc4,circuit_2_in_h11_forc4,circuit_2_in_h12_forc4),dim=0)
if m==0 or i>=to_cut_layer :
input_matrix_new[i][14:26]=circuit_2_in_forc4
circuit2_input_ln_forc4 = block.ln_1(circuit_2_in_forc4)# make representation matrix get normed
#get raw attention weight A (raw compression matrix), actually A consists of 4 items
Output_mhqk_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhqk)#X*Wqk
Output_mhqk_forc4=torch.matmul(Output_mhqk_forc4,circuit2_input_ln_forc4.transpose(-1,-2))#X*Wqk*XT, R^[H,N,N]=[12,14,14]
Output_mhqkb1_forc4=torch.matmul(W_mhqbias,W_mhk.transpose(-1,-2))#bq*WkT
Output_mhqkb1_forc4=torch.matmul(Output_mhqkb1_forc4,circuit2_input_ln_forc4.transpose(-1,-2))#bq*WkT*XT, R[H,N,N]
Output_mhqkb2_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhq)#X*Wq
Output_mhqkb2_forc4=torch.matmul(Output_mhqkb2_forc4,W_mhkbias.transpose(-1,-2))#X*Wq*bkT, R[H,N,N]
Output_mhqkb3_forc4=torch.matmul(W_mhqbias,W_mhkbias.transpose(-1,-2))#bq*bkT, R[H,N,N]
Output_mhqk_forc4=Output_mhqk_forc4+Output_mhqkb1_forc4+Output_mhqkb2_forc4+Output_mhqkb3_forc4
Output_mhqk_forc4 = Output_mhqk_forc4 / torch.full(
[], 64 ** 0.5, dtype=Output_mhqk_forc4.dtype, device=Output_mhqk_forc4.device)
#get compression matrix
# if only "normal" attention layer implements causal mask
key_length_forc4 = circuit2_input_ln_forc4.size(-2)
causal_mask_forc4 = torch.tril(torch.ones((key_length_forc4, key_length_forc4), dtype=torch.bool)).view(
1, key_length_forc4, key_length_forc4).to(self.device)
mask_value_forc4 = torch.finfo(Output_mhqk_forc4.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value_forc4 = torch.full([], mask_value_forc4, dtype=Output_mhqk_forc4.dtype, device=Output_mhqk_forc4.device)
Output_mhqk_forc4 = torch.where(causal_mask_forc4, Output_mhqk_forc4.to(Output_mhqk_forc4.dtype), mask_value_forc4)
attn_weights_forc4=nn.functional.softmax(Output_mhqk_forc4, dim=-1) #R^[H,N,N] but R^[H,-1,N]represents the next token prediction, so the valid dim is R^[H,1,N]
#get output of OV path (representation matrix)
Output_mhov_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhov)#X*Wov, R^[H,N,d]=[12,14,768]
#get production of each head and sum of all heads
bv_Wo_forc4=torch.matmul(W_mhvbias,W_mho)#R[H,N,D]=[12,14,768]
Output_mh_forc4=torch.matmul(attn_weights_forc4,Output_mhov_forc4)+torch.matmul(attn_weights_forc4,bv_Wo_forc4)#AxWvWo+A*bv*Wo
# R^[H,N,d], but R^[H,-1,d]represents the next token prediction, so the valid dim is R^[H,1,d]
#get each head
circuit_2_h1_forc4,circuit_2_h2_forc4,circuit_2_h3_forc4,circuit_2_h4_forc4,circuit_2_h5_forc4,circuit_2_h6_forc4,\
circuit_2_h7_forc4,circuit_2_h8_forc4,circuit_2_h9_forc4,circuit_2_h10_forc4,circuit_2_h11_forc4,circuit_2_h12_forc4=\
Output_mh_forc4.split(1,dim=0)
circuit_2_forc4=circuit_2_h1_forc4+circuit_2_h2_forc4+circuit_2_h3_forc4+circuit_2_h4_forc4+circuit_2_h5_forc4+\
circuit_2_h6_forc4+circuit_2_h7_forc4+circuit_2_h8_forc4+circuit_2_h9_forc4+circuit_2_h10_forc4+circuit_2_h11_forc4+circuit_2_h12_forc4
#finally add the bias of Wo, because Wo is conducted after merging the head
#circuit_4 is the attention+mlp path, attention_weight is as the same as one in circuit_2, but OVpath differs
circuit_4_in=circuit_2_forc4+W_obias
circuit4_input_ln = block.ln_2(circuit_4_in)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1=torch.matmul(circuit4_input_ln,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4=Act_mlp(Output_mlp1) #activated
circuit_4=torch.matmul(Output_mlp1_act_4,W_mlp2)#R^[B,N,d]=[1,14,768]
#get subcircuit of each head and compensation circuit
#head1
c4h1_in=circuit_2_h1_forc4
head1_c4in=block.ln_2(c4h1_in)
Output_mlp1_h1=torch.matmul(head1_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h1=Act_mlp(Output_mlp1_h1) #activated
circuit_4_h1=torch.matmul(Output_mlp1_act_4_h1,W_mlp2)#R^[B,N,d]=[1,14,768]
#head2
c4h2_in=circuit_2_h2_forc4
head2_c4in=block.ln_2(c4h2_in)
Output_mlp1_h2=torch.matmul(head2_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h2=Act_mlp(Output_mlp1_h2) #activated
circuit_4_h2=torch.matmul(Output_mlp1_act_4_h2,W_mlp2)#R^[B,N,d]=[1,14,768]
#head3
c4h3_in=circuit_2_h3_forc4
head3_c4in=block.ln_2(c4h3_in)
Output_mlp1_h3=torch.matmul(head3_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h3=Act_mlp(Output_mlp1_h3) #activated
circuit_4_h3=torch.matmul(Output_mlp1_act_4_h3,W_mlp2)#R^[B,N,d]=[1,14,768]
#head4
c4h4_in=circuit_2_h4_forc4
head4_c4in=block.ln_2(c4h4_in)
Output_mlp1_h4=torch.matmul(head4_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h4=Act_mlp(Output_mlp1_h4) #activated
circuit_4_h4=torch.matmul(Output_mlp1_act_4_h4,W_mlp2)#R^[B,N,d]=[1,14,768]
#head5
c4h5_in=circuit_2_h5_forc4
head5_c4in=block.ln_2(c4h5_in)
Output_mlp1_h5=torch.matmul(head5_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h5=Act_mlp(Output_mlp1_h5) #activated
circuit_4_h5=torch.matmul(Output_mlp1_act_4_h5,W_mlp2)#R^[B,N,d]=[1,14,768]
#head6
c4h6_in=circuit_2_h6_forc4
head6_c4in=block.ln_2(c4h6_in)
Output_mlp1_h6=torch.matmul(head6_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h6=Act_mlp(Output_mlp1_h6) #activated
circuit_4_h6=torch.matmul(Output_mlp1_act_4_h6,W_mlp2)#R^[B,N,d]=[1,14,768]
#head7
c4h7_in=circuit_2_h7_forc4
head7_c4in=block.ln_2(c4h7_in)
Output_mlp1_h7=torch.matmul(head7_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h7=Act_mlp(Output_mlp1_h7) #activated
circuit_4_h7=torch.matmul(Output_mlp1_act_4_h7,W_mlp2)#R^[B,N,d]=[1,14,768]
#head8
c4h8_in=circuit_2_h8_forc4
head8_c4in=block.ln_2(c4h8_in)
Output_mlp1_h8=torch.matmul(head8_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h8=Act_mlp(Output_mlp1_h8) #activated
circuit_4_h8=torch.matmul(Output_mlp1_act_4_h8,W_mlp2)#R^[B,N,d]=[1,14,768]
#head9
c4h9_in=circuit_2_h9_forc4
head9_c4in=block.ln_2(c4h9_in)
Output_mlp1_h9=torch.matmul(head9_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h9=Act_mlp(Output_mlp1_h9) #activated
circuit_4_h9=torch.matmul(Output_mlp1_act_4_h9,W_mlp2)#R^[B,N,d]=[1,14,768]
#head10
c4h10_in=circuit_2_h10_forc4
head10_c4in=block.ln_2(c4h10_in)
Output_mlp1_h10=torch.matmul(head10_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h10=Act_mlp(Output_mlp1_h10) #activated
circuit_4_h10=torch.matmul(Output_mlp1_act_4_h10,W_mlp2)#R^[B,N,d]=[1,14,768]
#head11
c4h11_in=circuit_2_h11_forc4
head11_c4in=block.ln_2(c4h11_in)
Output_mlp1_h11=torch.matmul(head11_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h11=Act_mlp(Output_mlp1_h11) #activated
circuit_4_h11=torch.matmul(Output_mlp1_act_4_h11,W_mlp2)#R^[B,N,d]=[1,14,768]
#head12
c4h12_in=circuit_2_h12_forc4
head12_c4in=block.ln_2(c4h12_in)
Output_mlp1_h12=torch.matmul(head12_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h12=Act_mlp(Output_mlp1_h12) #activated
circuit_4_h12=torch.matmul(Output_mlp1_act_4_h12,W_mlp2)#R^[B,N,d]=[1,14,768]
#conpensation circuit for multi-heads, include the effects of bias in mlp1 and synergistic from interaction of multi-heads
if i<to_cut_layer and m!=0:
circuit_4_compst=input_matrix[i][26].unsqueeze(0)
else:
circuit_4_compst=circuit_4-circuit_4_h1-circuit_4_h2-circuit_4_h3-circuit_4_h4-circuit_4_h5-circuit_4_h6-circuit_4_h7-circuit_4_h8-\
circuit_4_h9-circuit_4_h10-circuit_4_h11-circuit_4_h12
if m==0 or i>=to_cut_layer :
input_matrix_new[i][26]=circuit_4_compst[0]
# circuit_5, the effect of addition of circuit_1 and circuit_2 caused by NewGeLU activation, also,
# meaning that the synergistic of residual stream (syn(A,B), and syn((A+B),Wmlp1bias))
if i<to_cut_layer and m!=0:
circuit_5=input_matrix[i][27].unsqueeze(0)
else:
#get the activation mapping
residual_stream=circuit_3_in+circuit_4_in
circuit5_input_ln = block.ln_2(residual_stream)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1_all=torch.matmul(circuit5_input_ln,W_mlp1)+W_mlp1bias #R^[B,N,m]=[1,14,3072]
Output_mlp1_all_act_steam=Act_mlp(Output_mlp1_all) #activated
circuit_stream_all=torch.matmul(Output_mlp1_all_act_steam,W_mlp2)#R^[B,N,d]=[1,14,768]
circuit_5=(circuit_stream_all-circuit_3-circuit_4)
if m==0 or i>=to_cut_layer :
input_matrix_new[i][27]=circuit_5[0]
#circuit_6, i.e.,circuit_Wmlp1bias, the movement of bias in Wo,Wmlp1
if i<to_cut_layer and m!=0:
circuit_6=input_matrix[i][28].unsqueeze(0)
else:
circuit_6=W_obias+W_mlp2bias
circuit_6=circuit_6.unsqueeze(0)
if m==0 or i>=to_cut_layer :
input_matrix_new[i][28]=circuit_6[0]
#get circuit sum
#circuit_sum=circuit_1+circuit_2+circuit_3+circuit_4+circuit_5+circuit_6 #R^[B,N,D]=[1,14,768]
circuit_sum=circuit_1+circuit_2_h1+circuit_2_h2+circuit_2_h3+circuit_2_h4+circuit_2_h5+circuit_2_h6+circuit_2_h7+circuit_2_h8+\
circuit_2_h9+circuit_2_h10+circuit_2_h11+circuit_2_h12+circuit_3+circuit_4_h1+circuit_4_h2+circuit_4_h3+\
circuit_4_h4+circuit_4_h5+circuit_4_h6+circuit_4_h7+circuit_4_h8+circuit_4_h9+circuit_4_h10+circuit_4_h11+circuit_4_h12+\
circuit_4_compst+circuit_5+circuit_6
circuit_input=circuit_sum
if i == cut_circuit_layer:
circuit_sum_cat=torch.cat((circuit_1,circuit_2_h1,circuit_2_h2,circuit_2_h3,circuit_2_h4,circuit_2_h5,circuit_2_h6,circuit_2_h7,circuit_2_h8,\
circuit_2_h9,circuit_2_h10,circuit_2_h11,circuit_2_h12,circuit_3,circuit_4_h1,circuit_4_h2,circuit_4_h3,\
circuit_4_h4,circuit_4_h5,circuit_4_h6,circuit_4_h7,circuit_4_h8,circuit_4_h9,circuit_4_h10,circuit_4_h11,circuit_4_h12,\
circuit_4_compst,circuit_5,circuit_6),dim=0)#[29,N,768]
cut_id=cut_circuit%29
cut_circuit_tensor_all=circuit_sum_cat
cut_circuit_tensor=cut_circuit_tensor_all[cut_id]
final_logits=self.get_logits(circuit_sum)
_,predicted_indices=torch.topk(final_logits[0][-1],10)
return predicted_indices,input_matrix_new,cut_circuit_tensor_all
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(1, 0, 2) # (batch, head, seq_length, head_features)
def get_softmax_logits(self,input,label_ids):
ln_hidden_state_in=self.model.transformer.ln_f(input)
logits_in=self.model.lm_head(ln_hidden_state_in)[0].unsqueeze(0)
label_logits_in=F.softmax(logits_in,dim=-1).index_select(-1,label_ids)#[1,N,1]
return label_logits_in
def get_logits(self,input):
ln_hidden_state_in=self.model.transformer.ln_f(input)
logits_in=self.model.lm_head(ln_hidden_state_in)[0].unsqueeze(0)
return logits_in
def check_representation(self,input,cut_circuit_tensor):
return input-cut_circuit_tensor
class assert_model(nn.Module):
def __init__(self,args):
super().__init__()
self.args=args
self.model_name=args.model_name
self.task_name=args.task_name
self.model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
self.tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.Unembedding=self.model.lm_head.weight#[E,D]
self.layers=self.model.transformer.h
self.device=args.device
@property
def device(self):
return self.model.device
@device.setter
def device(self, device):
self.model = self.model.to(device)
self.layers = self.layers.to(device)
def forward(self,inputs,label_ids,refined_matrix):
# refined_matrix=[349,349]
inputs=inputs.to(self.device)
label_ids=label_ids.to(self.device)
input_ids=inputs['input_ids']
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.model.transformer.wte(input_ids)
past_length = 0
past_key_values = tuple([None] * len(self.layers))
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=self.device)
position_ids = position_ids.unsqueeze(0)
position_embeds = self.model.transformer.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
circuit_input=hidden_states
key_length=circuit_input.size()[-2]
record_circuit_tensor_all=torch.zeros((12,27,key_length,768)).to(self.device)
record_circuit_compensate_all=torch.zeros((12,2,key_length,768)).to(self.device)
record_circuit_subset_all=torch.zeros((12,2,key_length,768)).to(self.device)
for i, (block, layer_past) in enumerate(zip(self.layers, past_key_values)):
#construct space mapping matrix
W_qkv=block.attn.c_attn.weight #R^[d,3a]=[768,2304]
W_qkvbias=block.attn.c_attn.bias #R^[3a]=[2304]
W_qkvbias=W_qkvbias.repeat(key_length,1)#R^[N,3a]=[14,2304]
W_q,W_k,W_v=W_qkv.split(768, dim=1)#R^[d,a]=[768,768]
W_qbias,W_kbias,W_vbias=W_qkvbias.split(768, dim=-1)#R^[N,a]=[14,768]
W_mhq=self._split_heads(W_q,12,64)#R^[num_head,d,a/num_head]=[12,768,64] simply H represents num_heads
W_mhk=self._split_heads(W_k,12,64)
W_mhv=self._split_heads(W_v,12,64)
W_mhqbias=self._split_heads(W_qbias,12,64)#R^[num_head,N,a/num_head]=[12,14,64]
W_mhkbias=self._split_heads(W_kbias,12,64)
W_mhvbias=self._split_heads(W_vbias,12,64)
W_mhqk=torch.matmul(W_mhq,W_mhk.transpose(-1,-2))#R[H, d,d]=[12,768,768]
W_o=block.attn.c_proj.weight#R^[a,d]=[768,768]
W_obias=block.attn.c_proj.bias#R^[d]=[768],but in practice, we used R=[N,768]
W_obias=W_obias.repeat(key_length,1)#R^[N,a]=[14,768]
W_mho=self._split_heads(W_o.transpose(-1,-2),12,64).transpose(-1,-2)#because a is first dim, so need transpose, R^[H,a/H,D]=[12,64,768]
W_mhov=torch.matmul(W_mhv,W_mho)#R^[H,d,d]=[12,768,768]
W_mlp1=block.mlp.c_fc.weight #R^[d,m]=[768,3072]
W_mlp1bias=block.mlp.c_fc.bias #R^[m]=[3072]
W_mlp1bias=W_mlp1bias.repeat(key_length,1)#R^[N,m]=[14,3072]
W_mlp2=block.mlp.c_proj.weight #R^[m,d]=[3072,768]
W_mlp2bias=block.mlp.c_proj.bias #R^[d]=[768]
W_mlp2bias=W_mlp2bias.repeat(key_length,1)#R^[N,m]=[14,3072]
Act_mlp=block.mlp.act #activation of mlp, and activation of attention omitted is softmax
#circuit_1 is the self path, only include itself
circuit_1_in=circuit_input
circuit_1=circuit_1_in
#circuit_2 is the attention only path, only include attention,
circuit_2_in=circuit_input
circuit_2_in=circuit_2_in.repeat(12,1,1)#get multi-head representation matrix, R^[H,N,d]=[12,14,768]
circuit_2_in_h1,circuit_2_in_h2,circuit_2_in_h3,circuit_2_in_h4,circuit_2_in_h5,circuit_2_in_h6,circuit_2_in_h7,\
circuit_2_in_h8,circuit_2_in_h9,circuit_2_in_h10,circuit_2_in_h11,circuit_2_in_h12=circuit_2_in.split(1,dim=0)
if i>0:
check_num=i*29+1
circuit_2_in_h1=self.check_representation(circuit_2_in_h1,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+2
circuit_2_in_h2=self.check_representation(circuit_2_in_h2,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+3
circuit_2_in_h3=self.check_representation(circuit_2_in_h3,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+4
circuit_2_in_h4=self.check_representation(circuit_2_in_h4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+5
circuit_2_in_h5=self.check_representation(circuit_2_in_h5,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+6
circuit_2_in_h6=self.check_representation(circuit_2_in_h6,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+7
circuit_2_in_h7=self.check_representation(circuit_2_in_h7,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+8
circuit_2_in_h8=self.check_representation(circuit_2_in_h8,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+9
circuit_2_in_h9=self.check_representation(circuit_2_in_h9,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+10
circuit_2_in_h10=self.check_representation(circuit_2_in_h10,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+11
circuit_2_in_h11=self.check_representation(circuit_2_in_h11,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+12
circuit_2_in_h12=self.check_representation(circuit_2_in_h12,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
circuit_2_in=torch.cat((circuit_2_in_h1,circuit_2_in_h2,circuit_2_in_h3,circuit_2_in_h4,circuit_2_in_h5,circuit_2_in_h6,circuit_2_in_h7,\
circuit_2_in_h8,circuit_2_in_h9,circuit_2_in_h10,circuit_2_in_h11,circuit_2_in_h12),dim=0)
circuit2_input_ln = block.ln_1(circuit_2_in)# make representation matrix get normed
#get raw attention weight A (raw compression matrix), actually A consists of 4 items
Output_mhqk=torch.matmul(circuit2_input_ln,W_mhqk)#X*Wqk
Output_mhqk=torch.matmul(Output_mhqk,circuit2_input_ln.transpose(-1,-2))#X*Wqk*XT, R^[H,N,N]=[12,14,14]
Output_mhqkb1=torch.matmul(W_mhqbias,W_mhk.transpose(-1,-2))#bq*WkT
Output_mhqkb1=torch.matmul(Output_mhqkb1,circuit2_input_ln.transpose(-1,-2))#bq*WkT*XT, R[H,N,N]
Output_mhqkb2=torch.matmul(circuit2_input_ln,W_mhq)#X*Wq
Output_mhqkb2=torch.matmul(Output_mhqkb2,W_mhkbias.transpose(-1,-2))#X*Wq*bkT, R[H,N,N]
Output_mhqkb3=torch.matmul(W_mhqbias,W_mhkbias.transpose(-1,-2))#bq*bkT, R[H,N,N]
Output_mhqk=Output_mhqk+Output_mhqkb1+Output_mhqkb2+Output_mhqkb3
Output_mhqk = Output_mhqk / torch.full(
[], 64 ** 0.5, dtype=Output_mhqk.dtype, device=Output_mhqk.device)
#get compression matrix
# if only "normal" attention layer implements causal mask
_, key_length = circuit2_input_ln.size(-2), circuit2_input_ln.size(-2)
causal_mask = torch.tril(torch.ones((key_length, key_length), dtype=torch.bool)).view(
1, key_length, key_length).to(self.device)
mask_value = torch.finfo(Output_mhqk.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.full([], mask_value, dtype=Output_mhqk.dtype, device=Output_mhqk.device)
Output_mhqk = torch.where(causal_mask, Output_mhqk.to(Output_mhqk.dtype), mask_value)
attn_weights=nn.functional.softmax(Output_mhqk, dim=-1) #R^[H,N,N] but R^[H,-1,N]represents the next token prediction, so the valid dim is R^[H,1,N]
#get output of OV path (representation matrix)
Output_mhov=torch.matmul(circuit2_input_ln,W_mhov)#X*Wov, R^[H,N,d]=[12,14,768]
#get production of each head and sum of all heads
bv_Wo=torch.matmul(W_mhvbias,W_mho)#R[H,N,D]=[12,14,768]
Output_mh=torch.matmul(attn_weights,Output_mhov)+torch.matmul(attn_weights,bv_Wo)#AxWvWo+A*bv*Wo
# R^[H,N,d], but R^[H,-1,d]represents the next token prediction, so the valid dim is R^[H,1,d]
#get each head
circuit_2_h1,circuit_2_h2,circuit_2_h3,circuit_2_h4,circuit_2_h5,circuit_2_h6,circuit_2_h7,circuit_2_h8,\
circuit_2_h9,circuit_2_h10,circuit_2_h11,circuit_2_h12=Output_mh.split(1,dim=0)
circuit_2=circuit_2_h1+circuit_2_h2+circuit_2_h3+circuit_2_h4+circuit_2_h5+circuit_2_h6+circuit_2_h7+circuit_2_h8+circuit_2_h9+circuit_2_h10+circuit_2_h11+circuit_2_h12
#finally add the bias of Wo, because Wo is conducted after merging the head
#circuit_3 is the mlp only path,
circuit_3_in=circuit_input
if i >0:
check_num=i*29+13
circuit_3_in=self.check_representation(circuit_3_in,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
circuit3_input_ln = block.ln_1(circuit_3_in)# make representation matrix get normed R^[N,d]=[14,768]
circuit3_input_ln = block.ln_2(circuit3_input_ln)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1=torch.matmul(circuit3_input_ln,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_3=Act_mlp(Output_mlp1) #activated
circuit_3=torch.matmul(Output_mlp1_act_3,W_mlp2)#R^[B,N,d]=[1,14,768]
#new circuit_2 for circuit_4
circuit_2_in_forc4=circuit_input
circuit_2_in_forc4=circuit_2_in_forc4.repeat(12,1,1)#get multi-head representation matrix, R^[H,N,d]=[12,14,768]
circuit_2_in_h1_forc4,circuit_2_in_h2_forc4,circuit_2_in_h3_forc4,circuit_2_in_h4_forc4,circuit_2_in_h5_forc4,circuit_2_in_h6_forc4,\
circuit_2_in_h7_forc4,circuit_2_in_h8_forc4,circuit_2_in_h9_forc4,circuit_2_in_h10_forc4,circuit_2_in_h11_forc4,circuit_2_in_h12_forc4=\
circuit_2_in_forc4.split(1,dim=0)
if i>0:
check_num=i*29+14
circuit_2_in_h1_forc4=self.check_representation(circuit_2_in_h1_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+15
circuit_2_in_h2_forc4=self.check_representation(circuit_2_in_h2_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+16
circuit_2_in_h3_forc4=self.check_representation(circuit_2_in_h3_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+17
circuit_2_in_h4_forc4=self.check_representation(circuit_2_in_h4_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+18
circuit_2_in_h5_forc4=self.check_representation(circuit_2_in_h5_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+19
circuit_2_in_h6_forc4=self.check_representation(circuit_2_in_h6_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+20
circuit_2_in_h7_forc4=self.check_representation(circuit_2_in_h7_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+21
circuit_2_in_h8_forc4=self.check_representation(circuit_2_in_h8_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+22
circuit_2_in_h9_forc4=self.check_representation(circuit_2_in_h9_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+23
circuit_2_in_h10_forc4=self.check_representation(circuit_2_in_h10_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+24
circuit_2_in_h11_forc4=self.check_representation(circuit_2_in_h11_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
check_num=i*29+25
circuit_2_in_h12_forc4=self.check_representation(circuit_2_in_h12_forc4,refined_matrix[check_num],record_circuit_tensor_all[0:i+1],record_circuit_compensate_all[0:i+1],record_circuit_subset_all[0:i+1],block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias)
circuit_2_in_forc4=torch.cat(( circuit_2_in_h1_forc4,circuit_2_in_h2_forc4,circuit_2_in_h3_forc4,circuit_2_in_h4_forc4,circuit_2_in_h5_forc4,circuit_2_in_h6_forc4,\
circuit_2_in_h7_forc4,circuit_2_in_h8_forc4,circuit_2_in_h9_forc4,circuit_2_in_h10_forc4,circuit_2_in_h11_forc4,circuit_2_in_h12_forc4),dim=0)
circuit2_input_ln_forc4 = block.ln_1(circuit_2_in_forc4)# make representation matrix get normed
#get raw attention weight A (raw compression matrix), actually A consists of 4 items
Output_mhqk_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhqk)#X*Wqk
Output_mhqk_forc4=torch.matmul(Output_mhqk_forc4,circuit2_input_ln_forc4.transpose(-1,-2))#X*Wqk*XT, R^[H,N,N]=[12,14,14]
Output_mhqkb1_forc4=torch.matmul(W_mhqbias,W_mhk.transpose(-1,-2))#bq*WkT
Output_mhqkb1_forc4=torch.matmul(Output_mhqkb1_forc4,circuit2_input_ln_forc4.transpose(-1,-2))#bq*WkT*XT, R[H,N,N]
Output_mhqkb2_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhq)#X*Wq
Output_mhqkb2_forc4=torch.matmul(Output_mhqkb2_forc4,W_mhkbias.transpose(-1,-2))#X*Wq*bkT, R[H,N,N]
Output_mhqkb3_forc4=torch.matmul(W_mhqbias,W_mhkbias.transpose(-1,-2))#bq*bkT, R[H,N,N]
Output_mhqk_forc4=Output_mhqk_forc4+Output_mhqkb1_forc4+Output_mhqkb2_forc4+Output_mhqkb3_forc4
Output_mhqk_forc4 = Output_mhqk_forc4 / torch.full(
[], 64 ** 0.5, dtype=Output_mhqk_forc4.dtype, device=Output_mhqk_forc4.device)
#get compression matrix
# if only "normal" attention layer implements causal mask
key_length_forc4 = circuit2_input_ln_forc4.size(-2)
causal_mask_forc4 = torch.tril(torch.ones((key_length_forc4, key_length_forc4), dtype=torch.bool)).view(
1, key_length_forc4, key_length_forc4).to(self.device)
mask_value_forc4 = torch.finfo(Output_mhqk_forc4.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value_forc4 = torch.full([], mask_value_forc4, dtype=Output_mhqk_forc4.dtype, device=Output_mhqk_forc4.device)
Output_mhqk_forc4 = torch.where(causal_mask_forc4, Output_mhqk_forc4.to(Output_mhqk_forc4.dtype), mask_value_forc4)
attn_weights_forc4=nn.functional.softmax(Output_mhqk_forc4, dim=-1) #R^[H,N,N] but R^[H,-1,N]represents the next token prediction, so the valid dim is R^[H,1,N]
#get output of OV path (representation matrix)
Output_mhov_forc4=torch.matmul(circuit2_input_ln_forc4,W_mhov)#X*Wov, R^[H,N,d]=[12,14,768]
#get production of each head and sum of all heads
bv_Wo_forc4=torch.matmul(W_mhvbias,W_mho)#R[H,N,D]=[12,14,768]
Output_mh_forc4=torch.matmul(attn_weights_forc4,Output_mhov_forc4)+torch.matmul(attn_weights_forc4,bv_Wo_forc4)#AxWvWo+A*bv*Wo
# R^[H,N,d], but R^[H,-1,d]represents the next token prediction, so the valid dim is R^[H,1,d]
#get each head
circuit_2_h1_forc4,circuit_2_h2_forc4,circuit_2_h3_forc4,circuit_2_h4_forc4,circuit_2_h5_forc4,circuit_2_h6_forc4,\
circuit_2_h7_forc4,circuit_2_h8_forc4,circuit_2_h9_forc4,circuit_2_h10_forc4,circuit_2_h11_forc4,circuit_2_h12_forc4=\
Output_mh_forc4.split(1,dim=0)
circuit_2_forc4=circuit_2_h1_forc4+circuit_2_h2_forc4+circuit_2_h3_forc4+circuit_2_h4_forc4+circuit_2_h5_forc4+\
circuit_2_h6_forc4+circuit_2_h7_forc4+circuit_2_h8_forc4+circuit_2_h9_forc4+circuit_2_h10_forc4+circuit_2_h11_forc4+circuit_2_h12_forc4
#finally add the bias of Wo, because Wo is conducted after merging the head
#circuit_4 is the attention+mlp path, attention_weight is as the same as one in circuit_2, but OVpath differs
circuit_4_in=circuit_2_forc4+W_obias
circuit4_input_ln = block.ln_2(circuit_4_in)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1=torch.matmul(circuit4_input_ln,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4=Act_mlp(Output_mlp1) #activated
circuit_4=torch.matmul(Output_mlp1_act_4,W_mlp2)#R^[B,N,d]=[1,14,768]
#get subcircuit of each head and compensation circuit
#head1
c4h1_in=circuit_2_h1_forc4
head1_c4in=block.ln_2(c4h1_in)
Output_mlp1_h1=torch.matmul(head1_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h1=Act_mlp(Output_mlp1_h1) #activated
circuit_4_h1=torch.matmul(Output_mlp1_act_4_h1,W_mlp2)#R^[B,N,d]=[1,14,768]
#head2
c4h2_in=circuit_2_h2_forc4
head2_c4in=block.ln_2(c4h2_in)
Output_mlp1_h2=torch.matmul(head2_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h2=Act_mlp(Output_mlp1_h2) #activated
circuit_4_h2=torch.matmul(Output_mlp1_act_4_h2,W_mlp2)#R^[B,N,d]=[1,14,768]
#head3
c4h3_in=circuit_2_h3_forc4
head3_c4in=block.ln_2(c4h3_in)
Output_mlp1_h3=torch.matmul(head3_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h3=Act_mlp(Output_mlp1_h3) #activated
circuit_4_h3=torch.matmul(Output_mlp1_act_4_h3,W_mlp2)#R^[B,N,d]=[1,14,768]
#head4
c4h4_in=circuit_2_h4_forc4
head4_c4in=block.ln_2(c4h4_in)
Output_mlp1_h4=torch.matmul(head4_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h4=Act_mlp(Output_mlp1_h4) #activated
circuit_4_h4=torch.matmul(Output_mlp1_act_4_h4,W_mlp2)#R^[B,N,d]=[1,14,768]
#head5
c4h5_in=circuit_2_h5_forc4
head5_c4in=block.ln_2(c4h5_in)
Output_mlp1_h5=torch.matmul(head5_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h5=Act_mlp(Output_mlp1_h5) #activated
circuit_4_h5=torch.matmul(Output_mlp1_act_4_h5,W_mlp2)#R^[B,N,d]=[1,14,768]
#head6
c4h6_in=circuit_2_h6_forc4
head6_c4in=block.ln_2(c4h6_in)
Output_mlp1_h6=torch.matmul(head6_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h6=Act_mlp(Output_mlp1_h6) #activated
circuit_4_h6=torch.matmul(Output_mlp1_act_4_h6,W_mlp2)#R^[B,N,d]=[1,14,768]
#head7
c4h7_in=circuit_2_h7_forc4
head7_c4in=block.ln_2(c4h7_in)
Output_mlp1_h7=torch.matmul(head7_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h7=Act_mlp(Output_mlp1_h7) #activated
circuit_4_h7=torch.matmul(Output_mlp1_act_4_h7,W_mlp2)#R^[B,N,d]=[1,14,768]
#head8
c4h8_in=circuit_2_h8_forc4
head8_c4in=block.ln_2(c4h8_in)
Output_mlp1_h8=torch.matmul(head8_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h8=Act_mlp(Output_mlp1_h8) #activated
circuit_4_h8=torch.matmul(Output_mlp1_act_4_h8,W_mlp2)#R^[B,N,d]=[1,14,768]
#head9
c4h9_in=circuit_2_h9_forc4
head9_c4in=block.ln_2(c4h9_in)
Output_mlp1_h9=torch.matmul(head9_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h9=Act_mlp(Output_mlp1_h9) #activated
circuit_4_h9=torch.matmul(Output_mlp1_act_4_h9,W_mlp2)#R^[B,N,d]=[1,14,768]
#head10
c4h10_in=circuit_2_h10_forc4
head10_c4in=block.ln_2(c4h10_in)
Output_mlp1_h10=torch.matmul(head10_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h10=Act_mlp(Output_mlp1_h10) #activated
circuit_4_h10=torch.matmul(Output_mlp1_act_4_h10,W_mlp2)#R^[B,N,d]=[1,14,768]
#head11
c4h11_in=circuit_2_h11_forc4
head11_c4in=block.ln_2(c4h11_in)
Output_mlp1_h11=torch.matmul(head11_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h11=Act_mlp(Output_mlp1_h11) #activated
circuit_4_h11=torch.matmul(Output_mlp1_act_4_h11,W_mlp2)#R^[B,N,d]=[1,14,768]
#head12
c4h12_in=circuit_2_h12_forc4
head12_c4in=block.ln_2(c4h12_in)
Output_mlp1_h12=torch.matmul(head12_c4in,W_mlp1) #R^[B,N,m]=[1,14,3072]
Output_mlp1_act_4_h12=Act_mlp(Output_mlp1_h12) #activated
circuit_4_h12=torch.matmul(Output_mlp1_act_4_h12,W_mlp2)#R^[B,N,d]=[1,14,768]
#conpensation circuit for multi-heads, include the effects of bias in mlp1 and synergistic from interaction of multi-heads
circuit_4_compst=circuit_4-circuit_4_h1-circuit_4_h2-circuit_4_h3-circuit_4_h4-circuit_4_h5-circuit_4_h6-circuit_4_h7-circuit_4_h8-\
circuit_4_h9-circuit_4_h10-circuit_4_h11-circuit_4_h12
# circuit_5, the effect of addition of circuit_1 and circuit_2 caused by NewGeLU activation, also,
# meaning that the synergistic of residual stream (syn(A,B), and syn((A+B),Wmlp1bias))
#get the activation mapping
residual_stream=circuit_3_in+circuit_2_forc4+W_obias
circuit3_input_ln = block.ln_2(residual_stream)# make representation matrix get normed R^[N,d]=[14,768]
Output_mlp1_all=torch.matmul(circuit3_input_ln,W_mlp1)+W_mlp1bias #R^[B,N,m]=[1,14,3072]
Output_mlp1_all_act_steam=Act_mlp(Output_mlp1_all) #activated
circuit_stream_all=torch.matmul(Output_mlp1_all_act_steam,W_mlp2)#R^[B,N,d]=[1,14,768]
circuit_5=(circuit_stream_all-circuit_3-circuit_4)
#circuit_6, i.e.,circuit_Wmlp1bias, the movement of bias in Wo,Wmlp1
circuit_6=W_obias+W_mlp2bias
circuit_6=circuit_6.unsqueeze(0)
#get circuit sum
#circuit_sum=circuit_1+circuit_2+circuit_3+circuit_4+circuit_5+circuit_6 #R^[B,N,D]=[1,14,768]
circuit_sum=circuit_1+circuit_2_h1+circuit_2_h2+circuit_2_h3+circuit_2_h4+circuit_2_h5+circuit_2_h6+circuit_2_h7+circuit_2_h8+\
circuit_2_h9+circuit_2_h10+circuit_2_h11+circuit_2_h12+circuit_3+circuit_4_h1+circuit_4_h2+circuit_4_h3+\
circuit_4_h4+circuit_4_h5+circuit_4_h6+circuit_4_h7+circuit_4_h8+circuit_4_h9+circuit_4_h10+circuit_4_h11+circuit_4_h12+\
circuit_4_compst+circuit_5+circuit_6
circuit_input=circuit_sum
circuit_sum_cat=torch.cat((circuit_1,circuit_2_h1,circuit_2_h2,circuit_2_h3,circuit_2_h4,circuit_2_h5,circuit_2_h6,circuit_2_h7,circuit_2_h8,\
circuit_2_h9,circuit_2_h10,circuit_2_h11,circuit_2_h12,circuit_3,circuit_4_h1,circuit_4_h2,circuit_4_h3,\
circuit_4_h4,circuit_4_h5,circuit_4_h6,circuit_4_h7,circuit_4_h8,circuit_4_h9,circuit_4_h10,circuit_4_h11,circuit_4_h12,\
circuit_6),dim=0)#[29,N,768]
circuit_sum_compensate=torch.cat((circuit_4_compst,circuit_5),dim=0)
circuit_sum_subset=torch.cat((circuit_4_in,residual_stream))
record_circuit_tensor_all[i]=circuit_sum_cat
record_circuit_compensate_all[i]=circuit_sum_compensate
record_circuit_subset_all[i]= circuit_sum_subset
final_logits=self.get_logits(circuit_sum)
_,predicted_indices=torch.topk(final_logits[0][-1],1)
assert predicted_indices==label_ids
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(1, 0, 2) # (batch, head, seq_length, head_features)
def get_softmax_logits(self,input,label_ids):
ln_hidden_state_in=self.model.transformer.ln_f(input)
logits_in=self.model.lm_head(ln_hidden_state_in)[0].unsqueeze(0)
label_logits_in=F.softmax(logits_in,dim=-1).index_select(-1,label_ids)#[1,N,1]
return label_logits_in
def get_logits(self,input):
ln_hidden_state_in=self.model.transformer.ln_f(input)
logits_in=self.model.lm_head(ln_hidden_state_in)[0].unsqueeze(0)
return logits_in
def check_representation(self,input,refine_matrix,circuit_tensor,circuit_comp_tensor,circuit_subset_tensor,block,W_mlp1,Act_mlp,W_mlp2,W_mlp1bias):
to_cut_list=torch.nonzero(refine_matrix)
circuit_subset_tensor_now=circuit_subset_tensor.detach()
circuit_4_comp_headsum=torch.sum(circuit_tensor[:,14:26],dim=1)
circuit_mlp=circuit_tensor[:,13].unsqueeze(1)
circuit_mlp_flag=torch.ones((circuit_tensor.size()[0]))
for to_cut_inx in range(to_cut_list.size()[0]):
to_cut_layer=to_cut_list[to_cut_inx].item()//29
to_cut_circuit=to_cut_list[to_cut_inx].item()%29
input=input-circuit_tensor[to_cut_layer][to_cut_circuit]
if to_cut_circuit>13 and to_cut_circuit<26:
circuit_subset_tensor_now[to_cut_layer][0]=circuit_subset_tensor_now[to_cut_layer][0]-circuit_tensor[to_cut_layer][to_cut_circuit]
circuit_4_comp_headsum[to_cut_layer]=circuit_4_comp_headsum[to_cut_layer]-circuit_tensor[to_cut_layer][to_cut_circuit]
circuit_subset_tensor_now[to_cut_layer][1]=circuit_subset_tensor_now[to_cut_layer][1]-circuit_tensor[to_cut_layer][to_cut_circuit]
if to_cut_circuit==13:
circuit_mlp_flag[to_cut_layer]=0
for la in range(circuit_tensor.size()[0]):
ori_c4comp=circuit_comp_tensor[la][0]
new_c4=circuit_subset_tensor_now[la][0]
new_circuit4_input_ln = block.ln_2(new_c4)# make representation matrix get normed R^[N,d]=[14,768]
new_Output_mlp1=torch.matmul(new_circuit4_input_ln,W_mlp1) #R^[B,N,m]=[1,14,3072]
new_Output_mlp1_act_4=Act_mlp(new_Output_mlp1) #activated
new_circuit_4=torch.matmul(new_Output_mlp1_act_4,W_mlp2)
new_c4comp=new_circuit_4-circuit_4_comp_headsum[la]
c4_comp_distance=ori_c4comp-new_c4comp
input=input-c4_comp_distance
ori_c5=circuit_comp_tensor[la][1]
new_residual_stream=circuit_subset_tensor_now[la][1]
new_circuit3_input_ln = block.ln_2(new_residual_stream)# make representation matrix get normed R^[N,d]=[14,768]
new_Output_mlp1_all=torch.matmul(new_circuit3_input_ln,W_mlp1)+W_mlp1bias #R^[B,N,m]=[1,14,3072]
new_Output_mlp1_all_act_steam=Act_mlp(new_Output_mlp1_all) #activated
new_circuit_residual_stream=torch.matmul(new_Output_mlp1_all_act_steam,W_mlp2)#R^[B,N,d]=[1,14,768]
if circuit_mlp_flag[la]==0:
new_c5=0
else:
new_c5=new_circuit_residual_stream-circuit_mlp[la]-new_c4comp
c5_distance=ori_c5-new_c5
input=input-c5_distance
return input
class refined_explain_model(nn.Module):
def __init__(self,args):
super().__init__()
self.args=args
self.model_name=args.model_name
self.task_name=args.task_name
self.model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
self.tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.Unembedding=self.model.lm_head.weight#[E,D]